功率器件在混合动力汽车的设计和实现

出处:笨鸟急飞 发布于:2011-08-27 08:46:03

 

  当前,汽车工业正面临着金融危机和能源环境问题的巨大挑战。发展新能源汽车,实现汽车动力系统的新能源化,推动传统汽车产业的战略转型,在国际上已经形成广泛共识。在这种形势下,美国、日本、欧洲等发达国家和地区,不约而同地将新能源为代表的低碳产业作为国家战略选择,都希望通过新能源产业与传统汽车产业的结合,破解汽车工业能源环境制约,培育新型战略性产业,提升产业竞争力,发展低碳经济,实现新一轮经济增长。在太阳能、电能等替代能源真正进入实用阶段之前,混合动力汽车因其低油耗、低排放的优势越来越受到人们的关注。

  用在HEV中逆变器和dc-dc转换器中的功率模块和其内的功率器件是主要的性能、可靠性和成本驱动器。效率、功率密度和特定功率是一些关键性能指标。重要的可靠性规范是热循环和功率循环。

  混合动力汽车的分类

  混合动力汽车的种类目前主要有3种。一种是以发动机为主动力,电动马达作为辅助动力的"并联方式".这种方式主要以发动机驱动行驶,利用电动马达所具有的再启动时产生强大动力的特征,在汽车起步、加速等发动机燃油消耗较大时,用电动马达辅助驱动的方式来降低发动机的油耗。这种方式的结构比较简单,只需要在汽车上增加电动马达和电瓶。另外一种是,在低速时只靠电动马达驱动行驶,速度提高时发动机和电动马达相配合驱动的"串联、并联方式".启动和低速时是只靠电动马达驱动行驶,当速度提高时,由发动机和电动马达共同高效地分担动力,这种方式需要动力分担装置和发电机等,因此结构复杂。还有一种是只用电动马达驱动行驶的电动汽车"串联方式",发动机只作为动力源,汽车只靠电动马达驱动行驶,驱动系统只是电动马达,但因为同样需要安装燃料发动机,所以也是混合动力汽车的一种。

  HEV系统中功率电子面临的挑战

  HEV(Hybrid-ElectricVehicle)-混合动力装置。混合动力就是指汽车使用汽油驱动和电力驱动两种驱动方式,优点在于车辆启动停止时,只靠发电机带动,不达到一定速度,发动机就不工作,因此,便能使发动机一直保持在工况状态,动力性好,排放量很低,而且电能的来源都是发动机,只需加油即可。混合动力汽车的关键是混合动力系统,它的性能直接关系到混合动力汽车整车性能。经过十多年的发展,混合动力系统总成已从原来发动机与电机离散结构向发动机电机和变速箱一体化结构发展,即集成化混合动力总成系统。 混合动力总成以动力传输路线分类,可分为串联式、并联式和混联式等三种。

  一般来说,传统的NPT IGBT在导通损耗和开关损耗特性间有一个平衡。若导通损耗降低则开关损耗增加。英飞凌的沟道FieldStop IGBT及配套的EmCon二极管技术与传统器件相比,在增加芯片电流密度的同时减小了导通和开关损耗。通过采用一个场截止(fieldstop)层来得到更低损耗,该层减小了器件厚度并降低了通过器件的压降。图1显示了平面和沟道器件所用不同IGBT技术的截面层。另外,Field-Stop器件可连续工作在150 °C(175 °C)的结温度,该特性强化了芯片电流密度并使采用更高的冷却温度变得更容易。

  

  嵌放在一个便利封装内的功率模块可承受极端温度环境、震动及其它恶劣环境条件。除器件工作引起的温度变化外,环境温度变异及车内产生的振动带来可靠性挑战。在混合汽车应用中功率模块预期的使用寿命是15年/15万英里,所以在设计该模块时,要使其能具有期望的可靠性。例如,在某些情况,更高的器件性能会对模块的稳定性产生不良影响。从器件技术的角度讲,某些功率器件可工作于高的结温度,但该更高的结温度会在线绑定接口产生更高温度,从而降低模块功率周期的稳定性。因此,需建立一整套全面的器件和封装技术规范来优化性能、可靠性和成本。

  混合车用功率半导体模块

  应用需要功率模块具有高电流密度,这也就意味着每单位电流容量具有更小的体积。器件越小,包纳其于其内的底层也就越小,结果就得到一个模块虽小但功率密度更高的模块。图2显示的是英飞凌预期的1200V器件体积的减小情况。显然,与NPT器件相比,FieldStop器件显著缩小了体积。

  

  封装设计和互连技术对模块的寄生感应产生很大影响,它们也可被用来改进功率密度。另外,选择的材料也会对性能和可靠性产生影响。例如,氮化硅底层的成本比氧化铝底层的成本高很多,但前者的热性能明显好于后者。同样,昂贵的铝硅碳化物基板也比便宜的铜基板具有高得多的热循环可靠性。

  当为HEV设计功率模块时,需在设计开始就明确关键的障碍。需采用恰当的器件技术、底层布局和封装技术以满足性能、可靠性和成本目标。表1显示了三种模块在性能和可靠性方面的对比,它们分别是:用于工业可变速驱动的标准半桥62mm模块、用于轻度混合的六单元(six-pack)HybridPACK1模块(图3)和用于全混合的六单元(six-pack)HybridPACK2模块。

  

  在全部三种模块内,都采用了相同的600V沟道FieldStop器件技术,但采用的封装技术不同。62mm和 HybridPACK1模块实现的器件电流是400A(每开关各有两个200A IGBT和两个200A二极管),而HybridPACK2模块的电流是800A(每开关各有四个200A IGBT和四个200A二极管)。用于62 mm、HybridPACK1和HybridPACK2模块功率和信号热连接的封装技术分别采用的是:焊接、线绑定和超声波焊接。通过布局改良及采用线绑定的功率和信号热连接,HybridPACK1模块的功率密度已比62mm模块提升了50%。虽然寄生感应增加了50%,但对600V器件来说,这并非一个主要问题,因为在轻度混合应用中坏的系统电压情况在200V以下。

  

  通过创新的超声波焊接工艺和改进的布局,HybridPACK2模块的功率密度增加了120%以上。多个线连接及为了移动绑定工具分配的空间使线绑定热连接在封装内很占空间;超声波焊接则省去了该空间且速度也比线绑定工艺快。另外,线绑定的电流输送能力有限。因厚的铜终端在超声波焊接时与底层融固在一起,所以,超声波焊接的电流载运能力不受限制。更紧凑的封装还显著降低了HybridPACK2封装的自感。对全混合应用来说,因系统电压会高于400V,且大电流会产生很大的dI/dt,所以低的寄生感应很重要。

  模块的热阻抗主要取决于每开关所占的芯片面积、模块的材料堆叠及底层布局。材料堆叠特性直接影响模块的热阻抗,而布局则增加了交叉传导部分。在62mm和HybridPACK1模块中,采用了平的铜基层,而HybridPACK2则采用集成的针翅管(pin-finned)铜基层。对带有平基层的模块来说,需将导热脂和散热层的热阻抗加起来以得到“从结到环境”的热阻抗。借助拿掉了导热脂层并直接将底层与针翅管基板焊接在一起,从而显著改善了HybridPACK2模块的热阻抗表现。

  模块内临近材料的热扩展不匹配将使连接部位产生压力形变并终导致故障。的压力产生在铜基板上为与底层焊接在一起所涂覆的焊料点上。为加强可靠性,模块制造商传统上采用氮化铝底层与铝硅碳化物基板的组合,此举显著增加了成本。为替代昂贵的铝硅碳化物,英飞凌开发出采用铜基板和改进的氧化铝底层的HybridPACK1和HybridPACK2模块。这种材料组合可满足可靠性目标要求,但成本却降低了很多。汽车的可靠性目标是从-40 °C到125 °C的1000次循环。

  结论

  功率模块的性能、可靠性和成本是HEV市场增长的主要驱动器。为降低成本,需降低功率模块内器件的功率密度和结温度。英飞凌的沟道FieldStop IGBT和EmCon就是在增加结温度的同时可降低导通和开关损耗的这样一类器件。通过采用高效的功率器件和超声波焊接技术可显著改进模块的功率密度;同样,采用集成的针翅管基层可改进热性能。改进的氧化铝底层和铜基板方法能以低成本为HybridPACK模块提供异的可靠性。对全混合应用来说,HybridPACK2是一款优异的模块,它提供了高功率密度、低自感、低热阻及可靠性和成本。

 


  

版权与免责声明

凡本网注明“出处:维库电子市场网”的所有作品,版权均属于维库电子市场网,转载请必须注明维库电子市场网,https://www.dzsc.com,违反者本网将追究相关法律责任。

本网转载并注明自其它出处的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品出处,并自负版权等法律责任。

如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。

上传BOM文件: BOM文件
*公司名:
*联系人:
*手机号码:
QQ:
应用领域:

有效期:
OEM清单文件: OEM清单文件
*公司名:
*联系人:
*手机号码:
QQ:
有效期:

扫码下载APP,
一键连接广大的电子世界。

在线人工客服

买家服务:
卖家服务:

0571-85317607

客服在线时间周一至周五
9:00-17:30

关注官方微信号,
第一时间获取资讯。

建议反馈

联系人:

联系方式:

按住滑块,拖拽到最右边
>>
感谢您向阿库提出的宝贵意见,您的参与是维库提升服务的动力!意见一经采纳,将有感恩红包奉上哦!