STM32 USART 串口 DMA 接收和发送的源码详解

出处:eefocus 发布于:2018-07-24 14:15:39

  硬件平台:STM32F103ZET6;

  开发环境:KEIL 4;

  先说说应用通讯模式,串口终端的工作方式和迪文屏差不多,终端被动接受MCU发的指令,终端会偶尔主动发送一些数据给MCU(像迪文屏的触摸信息上传)。

  串口DMA发送:

  发送数据的流程:

  前台程序中有数据要发送,则需要做如下几件事

  1.      在数据发送缓冲区内放好要发送的数据,说明:此数据缓冲区的首地址必须要在DMA初始化的时候写入到DMA配置中去。

  2.      将数据缓冲区内要发送的数据字节数赋值给发送DMA通道,(串口发送DMA和串口接收DAM不是同一个DMA通道)

  3.      开启DMA,一旦开启,则DMA开始发送数据,说明一下:在KEIL调试好的时候,DMA和调试是不同步的,即不管Keil 是什么状态,DMA总是发送数据。

  4.      等待发送完成标志位,即下面的终端服务函数中的第3点设置的标志位。或者根据自己的实际情况来定,是否要一直等待这个标志位,也可以通过状态机的方式来循环查询也可以。或者其他方式。

  判断数据发送完成:

  启动DMA并发送完后,产生DMA发送完成中断,在中断函数中做如下几件事:

  1. 清DMA发送完成中断标志位

  2. 关闭串口发送DMA通道

  3. 给前台程序设置一个软件标志位,说明数据已经发送完毕

  串口DMA接收:

  接收数据的流程:

  串口接收DMA在初始化的时候就处于开启状态,一直等待数据的到来,在软件上无需做任何事情,只要在初始化配置的时候设置好配置就可以了。

  判断数据数据接收完成:

  这里判断接收完成是通过串口空闲中断的方式实现,即当串口数据流停止后,就会产生IDLE中断。这个中断里面做如下几件事:

  1.      关闭串口接收DMA通道,2点原因:1.防止后面又有数据接收到,产生干扰。2.便于DMA的重新配置赋值,下面第4点。

  2.      清除DMA 所有标志位

  3.      从DMA寄存器中获取接收到的数据字节数

  4.      重新设置DMA下次要接收的数据字节数,注意,这里是给DMA寄存器重新设置接收的计数值,这个数量只能大于或者等于可能接收的字节数,否则当DMA接收计数器递减到0的时候,又会重载这个计数值,重新循环递减计数,所以接收缓冲区的数据则会被覆盖丢失。

  5.  开启DMA通道,等待下的数据接收,注意,对DMA的相关寄存器配置写入,如第4条的写入计数值,必须要在关闭DMA的条件进行,否则操作无效。

  说明一下,STM32的IDLE的中断在串口无数据接收的情况下,是不会一直产生的,产生的条件是这样的,当清除IDLE标志位后,必须有接收到个数据后,才开始触发,一断接收的数据断流,没有接收到数据,即产生IDLE中断。

  USART 和 DMA 硬件初始化配置

  /*--- LumModule Usart Config ---------------------------------------*/

  #define LUMMOD_UART                      USART3

  #define LUMMOD_UART_GPIO                 GPIOC

  #define LUMMOD_UART_CLK                  RCC_APB1Periph_USART3

  #define LUMMOD_UART_GPIO_CLK        RCC_APB2Periph_GPIOC

  #define LUMMOD_UART_RxPin               GPIO_Pin_11

  #define LUMMOD_UART_TxPin               GPIO_Pin_10

  #define LUMMOD_UART_IRQn                USART3_IRQn

  #define LUMMOD_UART_DR_Base                  (USART3_BASE + 0x4)  //0x40013804

  #define LUMMOD_UART_Tx_DMA_Channel      DMA1_Channel2

  #define LUMMOD_UART_Tx_DMA_FLAG         DMA1_FLAG_GL2//DMA1_FLAG_TC2 | DMA1_FLAG_TE2

  #define LUMMOD_UART_Tx_DMA_IRQ          DMA1_Channel2_IRQn

  #define LUMMOD_UART_Rx_DMA_Channel      DMA1_Channel3

  #define LUMMOD_UART_Rx_DMA_FLAG         DMA1_FLAG_GL3//DMA1_FLAG_TC3 | DMA1_FLAG_TE3

  #define LUMMOD_UART_Rx_DMA_IRQ      DMA1_Channel3_IRQn

  void Uart_Init(void)

  {

  NVIC_InitTypeDef NVIC_InitStructure;

  GPIO_InitTypeDef GPIO_InitStructure;

  USART_InitTypeDef USART_InitStructure;

  /* System Clocks Configuration */

  //= System Clocks Configuration ====================================================================//

  /* Enable GPIO clock */

  RCC_APB2PeriphClockCmd(LUMMOD_UART_GPIO_CLK ,  ENABLE ); // 开启串口所在IO端口的时钟

  /* Enable USART Clock */

  RCC_APB1PeriphClockCmd(LUMMOD_UART_CLK, ENABLE); // 开始串口时钟

  //=NVIC_Configuration==============================================================================//

  /* Configure the NVIC Preemption Priority Bits */

  NVIC_PriorityGroupConfig(NVIC_PriorityGroup_3);

  /* Enable the DMA Interrupt */

  NVIC_InitStructure.NVIC_IRQChannel = LUMMOD_UART_Tx_DMA_IRQ;   // 发送DMA通道的中断配置

  NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;     // 优先级设置

  NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;

  NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;

  NVIC_Init(&NVIC_InitStructure);

  /* Enable the USART Interrupt */

  NVIC_InitStructure.NVIC_IRQChannel = LUMMOD_UART_IRQn;     // 串口中断配置

  NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;

  NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;

  NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;

  NVIC_Init(&NVIC_InitStructure);

  //=GPIO_Configuration==============================================================================//

  GPIO_PinRemapConfig(GPIO_PartialRemap_USART3, ENABLE);  // 我这里没有用默认IO口,所以进行了重新映射,这个可以根据自己的硬件情况配置选择

  /* Configure USART3 Rx as input floating */

  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;   // 串口接收IO口的设置

  GPIO_InitStructure.GPIO_Pin = LUMMOD_UART_RxPin;

  GPIO_Init(LUMMOD_UART_GPIO, &GPIO_InitStructure);

  /* Configure USART3 Tx as alternate function push-pull */

  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;   // 串口发送IO口的设置

  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;  // 这里设置成复用形式的推挽输出

  GPIO_InitStructure.GPIO_Pin = LUMMOD_UART_TxPin;

  GPIO_Init(LUMMOD_UART_GPIO, &GPIO_InitStructure);

  DMA_Uart_Init();   // 串口 DMA 配置

  /* USART Format configuration ------------------------------------------------------*/

  USART_InitStructure.USART_WordLength = USART_WordLength_8b;    // 串口格式配置

  USART_InitStructure.USART_StopBits = USART_StopBits_1;

  USART_InitStructure.USART_Parity = USART_Parity_No;

  USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;

  USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;

  /* Configure USART3 */

  USART_InitStructure.USART_BaudRate = 115200;  //  波特率设置

  USART_Init(LUMMOD_UART, &USART_InitStructure);

  /* Enable USART3 Receive and Transmit interrupts */

  USART_ITConfig(LUMMOD_UART, USART_IT_IDLE, ENABLE);  // 开启 串口空闲IDEL 中断

  /* Enable the USART3 */

  USART_Cmd(LUMMOD_UART, ENABLE);  // 开启串口

  /* Enable USARTy DMA TX request */

  USART_DMACmd(LUMMOD_UART, USART_DMAReq_Tx, ENABLE);  // 开启串口DMA发送

  USART_DMACmd(LUMMOD_UART, USART_DMAReq_Rx, ENABLE); // 开启串口DMA接收

  }

  void DMA_Uart_Init(void)

  {

  DMA_InitTypeDef DMA_InitStructure;

  /* DMA clock enable */

  RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); // 开启DMA1时钟

  //=DMA_Configuration==============================================================================//

  /*--- LUMMOD_UART_Tx_DMA_Channel DMA Config ---*/

  DMA_Cmd(LUMMOD_UART_Tx_DMA_Channel, DISABLE);                           // 关DMA通道

  DMA_

  DMA_DeInit(LUMMOD_UART_Tx_DMA_Channel);                                 // 恢复缺省值

  DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)(&LUMMOD_UART->DR);// 设置串口发送数据寄存器

  DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)LumMod_Tx_Buf;         // 设置发送缓冲区首地址

  DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;                      // 设置外设位目标,内存缓冲区 ->外设寄存器

  DMA_InitStructure.DMA_BufferSize = LUMMOD_TX_BSIZE;                     // 需要发送的字节数,这里其实可以设置为0,因为在实际要发送的时候,会重新设置次值

  DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;        // 外设地址不做增加调整,调整不调整是DMA自动实现的

  DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;                 // 内存缓冲区地址增加调整

  DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; // 外设数据宽度8位,1个字节

  DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;         // 内存数据宽度8位,1个字节

  DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;                           // 单次传输模式

  DMA_InitStructure.DMA_Priority = DMA_Priority_VeryHigh;                 // 优先级设置

  DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;                            // 关闭内存到内存的DMA模式

  DMA_Init(LUMMOD_UART_Tx_DMA_Channel, &DMA_InitStructure);               // 写入配置

  DMA_ClearFlag(LUMMOD_UART_Tx_DMA_FLAG);                                 // 清除DMA所有标志

  DMA_Cmd(LUMMOD_UART_Tx_DMA_Channel, DISABLE); // 关闭DMA

  DMA_ITConfig(LUMMOD_UART_Tx_DMA_Channel, DMA_IT_TC, ENABLE);            // 开启发送DMA通道中断

  /*--- LUMMOD_UART_Rx_DMA_Channel DMA Config ---*/

  DMA_Cmd(LUMMOD_UART_Rx_DMA_Channel, DISABLE);                           // 关DMA通道

  DMA_DeInit(LUMMOD_UART_Rx_DMA_Channel);                                 // 恢复缺省值

  DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)(&LUMMOD_UART->DR);// 设置串口接收数据寄存器

  DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)LumMod_Rx_Buf;         // 设置接收缓冲区首地址

  DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;                      // 设置外设为数据源,外设寄存器 -> 内存缓冲区

  DMA_InitStructure.DMA_BufferSize = LUMMOD_RX_BSIZE;                     // 需要可能接收到的字节数

  DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;        // 外设地址不做增加调整,调整不调整是DMA自动实现的

  DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;                 // 内存缓冲区地址增加调整

  DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; // 外设数据宽度8位,1个字节

  DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;         // 内存数据宽度8位,1个字节

  DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;                           // 单次传输模式

  DMA_InitStructure.DMA_Priority = DMA_Priority_VeryHigh;                 // 优先级设置

  DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;                            // 关闭内存到内存的DMA模式

  DMA_Init(LUMMOD_UART_Rx_DMA_Channel, &DMA_InitStructure);               // 写入配置

  DMA_ClearFlag(LUMMOD_UART_Rx_DMA_FLAG);                                 // 清除DMA所有标志

  DMA_Cmd(LUMMOD_UART_Rx_DMA_Channel, ENABLE);                            // 开启接收DMA通道,等待接收数据

  }

  void BSP_Init(void)

  {

  Uart_Init();

  }

  //============================================================//

  DMA 发送应用源码

  void DMA1_Channel2_IRQHandler(void)

  {

  if(DMA_GetITStatus(DMA1_FLAG_TC2))

  {

  LumMod_Uart_DAM_Tx_Over();

  }

  }

  void LumMod_Uart_DAM_Tx_Over(void)

  {

  DMA_ClearFlag(LUMMOD_UART_Tx_DMA_FLAG);         // 清除标志

  DMA_Cmd(LUMMOD_UART_Tx_DMA_Channel, DISABLE);   // 关闭DMA通道

  OSMboxPost(mbLumModule_Tx, (void*)1);           // 设置标志位,这里我用的是UCOSII ,可以根据自己的需求进行修改

  }

  void LumMod_Cmd_WriteParam( uint8 sample_num, uint8 *psz_pa

ram )

{

    uint8 err;

    uint8 LumMod_Tx_Index ;

 

    LumMod_Tx_Index = 0;

    LumMod_Tx_Buf[LumMod_Tx_Index++] = 1;

    LumMod_Tx_Buf[LumMod_Tx_Index++] = 2;

    LumMod_Tx_Buf[LumMod_Tx_Index++] = 3;

    LumMod_Tx_Buf[LumMod_Tx_Index++] = 4;

    LumMod_Tx_Buf[LumMod_Tx_Index++] = 5;

    LumMod_Tx_Buf[LumMod_Tx_Index++] = 6;

    LumMod_Tx_Buf[LumMod_Tx_Index++] = 7;

    LumMod_Tx_Buf[LumMod_Tx_Index++] = 8;

   

    LumMod_Uart_Start_DMA_Tx( LumMod_Tx_Index );

    OSMboxPend(mbLumModule_Tx, 0, &err);

}

 

void LumMod_Uart_Start_DMA_Tx(uint16_t size)

{

    LUMMOD_UART_Tx_DMA_Channel->CNDTR = (uint16_t)size; // 设置要发送的字节数目

    DMA_Cmd(LUMMOD_UART_Tx_DMA_Channel, ENABLE);        //开始DMA发送

}

 

//============================================================//

DMA 接收应用源码

 

void USART3_IRQHandler(void)

{

    if(USART_GetITStatus(USART3, USART_IT_IDLE) != RESET)  // 空闲中断

    {

        LumMod_Uart_DMA_Rx_Data();

        USART_ReceiveData( USART3 ); // Clear IDLE interrupt flag bit

    }

}

void LumMod_Uart_DMA_Rx_Data(void)

{

    DMA_Cmd(LUMMOD_UART_Rx_DMA_Channel, DISABLE);       // 关闭DMA ,防止干扰

    DMA_ClearFlag( LUMMOD_UART_Rx_DMA_FLAG );           // 清DMA标志位

    LumMod_Rx_Data.index = LUMMOD_RX_BSIZE - DMA_GetCurrDataCounter(LUMMOD_UART_Rx_DMA_Channel); //获得接收到的字节数

    LUMMOD_UART_Rx_DMA_Channel->CNDTR = LUMMOD_RX_BSIZE;    //  重新赋值计数值,必须大于等于可能接收到的数据帧数目

DMA_Cmd(LUMMOD_UART_Rx_DMA_Channel, ENABLE);        /* DMA 开启,等待数

    DMA_Cmd(LUMMOD_UART_Rx_DMA_Channel, ENABLE);        /* DMA 开启,等待数据。注意,如果中断发送数据帧的速率很快,MCU来不及处理此次接收到的数据,中断又发来数据的话,这里不能开启,否则数据会被覆盖。有2种方式解决。

    1. 在重新开启接收DMA通道之前,将LumMod_Rx_Buf缓冲区里面的数据复制到另外一个数组中,然后再开启DMA,然后马上处理复制出来的数据。

    2. 建立双缓冲,在LumMod_Uart_DMA_Rx_Data函数中,重新配置DMA_MemoryBaseAddr 的缓冲区地址,那么下次接收到的数据就会保存到新的缓冲区中,不至于被覆盖。*/

    OSMboxPost(mbLumModule_Rx,  LumMod_Rx_Buf); // 发送接收到新数据标志,供前台程序查询

}


关键词:STM32串口

版权与免责声明

凡本网注明“出处:维库电子市场网”的所有作品,版权均属于维库电子市场网,转载请必须注明维库电子市场网,https://www.dzsc.com,违反者本网将追究相关法律责任。

本网转载并注明自其它出处的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品出处,并自负版权等法律责任。

如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。

相关技术资料
上传BOM文件: BOM文件
*公司名:
*联系人:
*手机号码:
QQ:
应用领域:

有效期:
OEM清单文件: OEM清单文件
*公司名:
*联系人:
*手机号码:
QQ:
有效期:

扫码下载APP,
一键连接广大的电子世界。

在线人工客服

买家服务:
卖家服务:

0571-85317607

客服在线时间周一至周五
9:00-17:30

关注官方微信号,
第一时间获取资讯。

建议反馈

联系人:

联系方式:

按住滑块,拖拽到最右边
>>
感谢您向阿库提出的宝贵意见,您的参与是维库提升服务的动力!意见一经采纳,将有感恩红包奉上哦!