T-29-25

SD4202

N-CHANNEL ENHANCEMENT-MODE **HIGH-VOLTAGE D-MOS FETS**

ORDERING INFORMATION

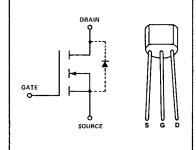
Sorted Chips In Waffle Pack	SD1202CHP		
TO-226AA (TO-92) Package	SD1202BD		
Description	200V, 250 ohm		

FEATURES

- Low Capacitance (Coss 1.0 pF typ.)
- Low Leakage (I_{DSS} 0.5nA typ. @ 180V) High Gate Standoff Voltage (±100V min.)

APPLICATIONS

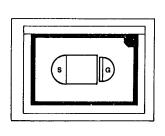
- Display Drivers
 AC-DC Relays
- Reed Relays
- Low-Power, High-Voltage Drivers


ABSOLUTE MAXIMUM RATINGS $(T = +25 \, ^{\circ}\text{C} \text{ unless otherwise noted.})$

Drain-Source Voltage	200V
Drain-Gate Voltage (VGS = 0)	
Gate-Source Voltage	± 100V
Continuous Drain Current (Note 1)	20mA
Peak Drain Current (Note 1)	40mA
Continuous Device Dissipation (Note 1)	300mW
Linear Derating Factor (Note 1)	2.4mW/°C

Operating Junction and Storage Temperature Range -55 to +150 °C Storage Temperature Range -55 to +150 °C Lead Temperature (1/6" from mounting surface for 30 Sec) + 260 °C

Note 1:Not applicable to chips. Final value depends upon mounting substrate.


SCHEMATIC DIAGRAM

PACKAGE DIMENSIONS (TO-92) TO-226AA

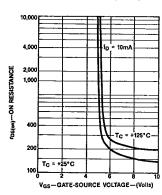
(See Package 5)

CHIP CONFIGURATION

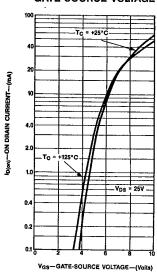
Drain is backside contact. Dimensions: .025 × .035 × .020 inches

SD1202

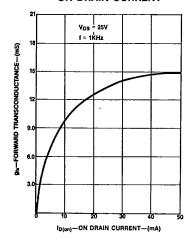
ELECTRICAL CHARACTERISTICS ($T_C = +25^{\circ}C$ unless otherwise noted)

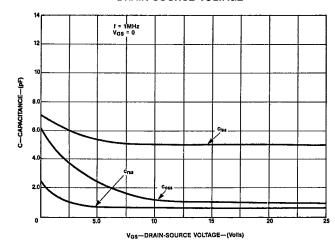

[]		CHARACTERISTIC -		SD1202		LIMITE	TEST CONDITIONS			
#				MIN	TYP	MAX	UNITS	TEST CONDITIONS		
1		BV _{DSS}	Drain Source Breakdown Voltage	200	260		v	$I_D = 1.0\mu A$, $V_{GS} = 0$		
2		I _{GSSF}	Gate Forward Leakage Current		.02	10	nA .	V _{GS} = 100V	→ V _{DS} = 0	
3		I _{GSSR}	Gate Reverse Leakage Current		02	-10		V _{GS} = -100V		
4	ပ္		2 .	Drain-Source OFF		0.5	3.0		V _{DS} = 180V	
5	STATIC	IDSS	Leakage Current	·		300		V _{GS} = 0	T _C = +125°C	
6		V _{GS(lh)}	Gate Source Threshold Voltage	1.0	4.0	5.0	v	I_D = 10 μ A, V_{DS} = V_{GS}		
7		I _{D(on)}	Drain-Source ON Current	40	55		mA	V _{DS} = 25V, V _{GS} = 10V		
8			Drain-Source ON Resistance		150	250	ohms	V _{GS} = 10V I _D = 10mA	-	
9	r _{DS(on)}	r _{DS(on)}				425			T _C = +125°C	
10		9fs	Common-Source Forward Transconductance	10	13		mS	V _{DS} = 25V, I _D = 20mA f = 1KHz (Note 1)		
11	DYNAMIC	C _{iss}	Common-Source Input Capacitance		5.0	10			•	
12	DYN	C _{rss}	Common-Source Reverse Transfer Capacitance		0.8	1.0	pF	V _{DS} = 25V, V _{GS} = 0 f = 1MHz		
13		Coss	Common-Source Output Capacitance		1.0	2.0				

Note 1: Pulse Test 80µSec, 1% Duty Cycle


T-29-25

TYPICAL PERFORMANCE CHARACTERISTICS (T_C = +25°C unless otherwise specified)


ON RESISTANCE --vs--GATE-SOURCE VOLTAGE


ON DRAIN CURRENT GATE-SOURCE VOLTAGE

FORWARD TRANSCONDUCTANCE --vs ON DRAIN CURRENT

CAPACITANCES -vs-DRAIN-SOURCE VOLTAGE

