LT5527型RF混频器及其在3G无线基站接收器中的应用

发布于:2007/1/30 9:09:28 | 808 次阅读

1 引言

凌特公司(Linear Technology)推出的LT5527型高线性度有源下变频RF混频器能大幅降低3G蜂窝基站的成本并简化其设计。LT5527 RF混频器具有3.7 GHz的工作频率。在1.9 GHz时,LT5527具有23.5 dBm的IP3(输入3阶截取)线性度、2.3dB转换增益和12.5 dB噪声指标,符合3G蜂窝基站和其他高性能无线基站接收器的动态范围要求。LT5527的本机振荡器(LO)和RF输入以单端方式工作,具有内置50Ω阻抗,只需很少外部匹配器件,可降低基站成本和缩短设计时间。此外.LT5527内包含1个低噪声LO缓冲器,允许工作于-3 dBm LO驱动功率,解决了RF隔离难题,无需外部滤波电路。

LT5527工作于400 MHz-3.7 GHz的宽频率范围,该范围覆盖850 MHz蜂窝频带、1.9 GHz-2.1GHz W-CDMA及UMTS频带。也覆盖了工作于450MHz、2.4 GHz和3.5 GHz频带的其他高性能无线设备。LT5527在RF和LO输入端都有片上RF变压器。这些变压器方便了50Ω阻抗匹配,并使输入能以单端方式工作。

2 LT5527的主要特性及引脚功能

2.1 LT5527的主要特性

LT5527采用单5 V工作电源。典型工作电流为78 mA。它可用EN引脚关断。关断时,消耗100μA静态电流。LT5527采用16引脚4 mmx4mm QFN封装。LT5527的主要特性如下:

50Ω单端式的RF和LO:

高输入IP3:0.9 GHz时的输入IP3为+24.5dBm,1.9 GHz时的输入IP3为+23.5 dBm:

0.9 GHz时的转换增益为3.2 dB,1.9 GHz时的转换增益为2.3 dB;

低噪声:0.9 GHz时的噪声指标为11.6 dB。1.9 GHz时的噪声指标为12.5 dB;

高LO-RF及LO-IF隔离;

LO至RF泄漏为-44 dBm;

工作电压范围为4.5 V~5.25 V。

2.2 LT5527的引脚功能

LT5527由高线性双平衡混频器、RF缓冲放大器、高速限幅LO缓冲器及偏置/使能电路构成,RF和LO输入以单端方式工作,IF输出是差分输出,低端LO和高端LO注入均可用。LT5527的外引脚排列如图1所示,内部结构如图2所示,各引脚的功能如下所述。

NC(1,2,4,8,13,14,16):这些引脚内部不连接,与电路板的地相接,以改善LO至RF及LO至IF之间的隔离。

RF(3):RF信号输入端,该引脚内部与RF输入变压器的初级相连。若RF信号源不被DC阻隔.则需串联一耦合电容器。在1.7 GHz-3 GHz之间。RF输入由内部匹配。400 MHz,3 700 MHz都需外部匹配。

EN(5):使能端,当输入使能电压超过3 V时,混频器电路通过6、7、10和11启动。当输入电压低于0.3 V时,所有的电路都不工作。EN=5 V时的典型输入电流为50 mA,EN=0 V时,电流为0μA。即使在启动时,EN端的电压也不应超过Vcc0.3V。

Vcc2(6):偏置电路的电源输入端,电流消耗为2.8 mA。该端外部接至Vcc1端,并接1 000 pF及1μF的耦合电容器。

Vcc1(7):LO缓冲器的电源端,电流消耗为23.2mA。该端外部接至Vcc2端,并接1 000pF及1μF的耦合电容器。

GND(9,12):地端,该端和底板地相连以增强隔离度,也是电路板上的RF地。

IF-,IF+(10,11):IF信号差分输出,需进行阻抗变换以实现输出匹配。这些端子通过阻抗匹配电感器、RF扼流圈或变压器中心抽头与Vcc相连。

LO(15):本地振荡器的单端输入,该端内部与LO变压器的初级相连。在1.2 GHz~5 GHz之间,LO输入可内部匹配。在380 MHz以下工作时需简单的外部匹配。

Exposed Pad(17):整个电路地的返回端,必须焊接至印刷电路板的接地面。

3 LT5527的应用电路设计

图3示出由混合变压器构成的IF匹配电路。以达到LO-IF泄漏和最宽的IF带宽。图4示出由1个离散的IF不平衡变压器代替IF变压器的电路,以降低成本和缩小尺寸。尽管离散的IF不平衡变压器也有较理想的噪声系数、线性度及较高的转换增益,但是LO-IF泄漏降低,IF的带宽减小。


3.1 RF输入端的设计

RF输入端由1个集成变压器和一个高线性差分放大器组成,变压器的初级与RF输入端(引脚3)和地连接。变压器的次级内部与差分放大器输入端连接。

变压器初级的一端内部和地连接,如果RF源有DC电压,则在其输入端接入耦合电容器。在1.7GHz-3 GHz之间,RF输入可由内部匹配,在这个频率范围不需要外部匹配。频带边沿输入回波损耗的典型值为10 dB。

在低频带边沿的输入匹配电路中,串联的电容器的值是2.7 pF(引脚3),以改善1.7 GHz的回波损耗(>20 dB);同样,为改善2.7 GHz的回波损耗(>30dB),其匹配串联的电感器感值是1.5 nH。同时,串联1.5nH/2.7 pF匹配网络使频带的边沿更理想,并将RF的输入带宽扩大至1.1 GHz~3.3 GHz。

在400 MHz低频处或3.7 GHz处,RF输入匹配网络在原有基础上增加并联电容器C5,如果450MHz下的输入匹配电容器C5的容值为12 pF,在评估板的50 Ω输入传输线上,位于距离引脚34.5 mm的位置;900 MHz下的输入匹配电容C5=3.9 pF,位于距离引脚31.3 mm的位置;3.5 GHz下的输入匹配电容器C5=0.5 pF。位于距离引脚34.5mm的位置。这种串联传输线/并联电容器匹配拓扑使得LT5527可用于倍频标准,而不需要修正电路板的设计。串联传输线可用串联的片式电感器代替,以使布局更简单。

RF输入阻抗和S11与频率的关系(没有外部匹配)列于表1。S11数据用于微波电路模拟设计自定义匹配网络。模拟和RF输入滤波器的接口连接。

3.2 LO输入端的设计

LO输入端由1个集成变压器和1个高速限幅差分放大器组成,其中。放大器驱动混频器.得到的线性和的噪声.1只内部耦合电容器和变压器的初级串联。无需连接外部耦合电容器。尽管内部放大器将有效频率限制在3.5 GHz。但在1.2 GHz~5 GHz范围内,LO输入由内部匹配。当然输入匹配可以变换,在低频(750 MHz)处,给引脚15并联1只电容器(C4),850MHz~1.2 GHz匹配中,C4=2.7 pF。

750MHz以下的LO输入匹配要求串联电感L4/并联电容C4,在650 MHz~830 MHz,其匹配网络的L4=3.9 nH,C4=5.6 pF;在540 MHz~640MHz,其匹配网络的L4=6.8 nH,C4=10 pF。评估板不包含L4的焊盘.因此可切断近处的引脚15以便插入L4。L4是低功耗多层片式电感器。

频率大于1.2 GHz时,尽管放大器提供的功率有几个dB.但LO驱动功率只有-3 dBm(LO输入功率变化,混频器性能不变);在频率低于1.2GHz的情况下,尽管-3 dBm的LO驱动功率仍然提供高转化增益和线性。但是为了得到噪声,LO驱动功率为0 dBm。自定义匹配网络的阻抗数据见表2,并参考LO端没有匹配时的情况。


3.3IF输出端的设计

IF输出端(IF+和IF-)和晶体管混频开关的集电极连接,如图5。IF+和IF-分别有电压偏置,主要通过变压器中心抽头或匹配电感取得。每个IF端从总电流(52 mA)中分出26 mA的电流。为了得到单端工作性能,这些差分输出需通过1个IF变压器或1个离散的IF不平衡变压器与外部电路结合。图3所示的电路包含1个用于阻抗变换和差分单端转换的IF变压器。图4所示的电路由1个离散的IF不平衡变压器实现同样的功能。低频时IF输出阻抗可等效415 Ω并联2.5 pF的电容器。频率与IF差分输出阻抗的关系如表3所示。这些数据参考封装引脚(没有外部元件),包含了IC和封装寄生效应的影响。对于IF频率为几千赫兹的低频或600MHz的高频。可匹配输出IF。


差分单端IF匹配的方法有以下三种:

(1)直接8:1 IF变压器匹配

IF频率低于100 MHz时,最简单的匹配设计是将1个8:1变压器连接到IF端,变压器将进行阻抗变换并提供单端50 Ω输出。在图3所示电路中.这种匹配通过短接L1、L2、用8:l变压器(不设置C3)代替4:1变频器即可实现。

(2)低通滤波器+4:1 IF变压器匹配

实现的LO-IF泄漏和较宽的IF带宽很简单.如图5所示为由3个元件构成低通滤波匹配网络。匹配元件C3、L1和L2结合内部2.5 pF电容器形成1个400 Ω~200 Ω低通滤波匹配网络,该匹配网络谐振于所期望的IF频率。这里4:1变压器将200 Ω差分输出变换成50 Ω的单端输出。


该匹配网络对40 MHz以上(包括40 MHz)的IF最为合适。对于40 MHz以下的IF频率。若串联电感器(L1、L2)的电感值取得过高,用这样的电感和寄生效应将影响稳定性,因此,8:1变压器适合于低IF频率。适用于IF频率的低通滤波的匹配元件值如表4所示。高Q值线绕片式电感器(L1、L2)大大改善了混频器的转换增益,但对线性度还是有点影响。


(3)离散IF不平衡变压器匹配

在许多应用中,可以用离散IF不平衡变压器代替IF变压器,如图4所示。L1、L2、C6和C7的值可用式(1)、式(2)计算,在IF频率期望值上得到180°相移,并提供50 Ω的单端输出。电感器L3的值也可计算,但L3抵消内部2.5pF的电容器,L3也为IF+端提供偏置电压。低功耗多层片式电感适合L1、L2,为了得到转换增益以及为IF+端提供最小DC电压,L3选用高Q值线绕片式电感器,C3是DC的隔离电容器。

与低通滤波4:1变压器匹配技术相比.这种网络提供约为0.8 dB的高转换增益(忽略IF变压器上的损耗),较好的噪声系数和IP3。IF中心频率偏移±15%,转换增益和噪声下降约1 dB。超过±15%以上,转换增益逐渐减少,但噪声迅速增大。IP3对带宽不太敏感,与低通滤波4:1变压器匹配相比仍可实现以性能,除了IF带宽,的差别是LO-IF泄漏,减少约-38 dBm。

通用IF频率下离散IF不平衡变压器的元件值如表5所示。由于电路板和寄生效应的影响,表5中的值与计算值略有差别。

对整个差分IF结构来说,还可以从另一个角度考虑,不用IF变压器,如图6所示,这里,混频器的IF输出匹配直接通过1个SAW滤波器,混频器IF端的电源由IF匹配网络中的电感器提供。计算L1、L2和C3的值,使之在期望的IF频率上谐振,并获得高品质因数和理想带宽。调整L和C值,以消除混频器内部2.5 pF电容和SAW滤波器输入电容的影响。在这种情况下,由于带通网络不变换阻抗,其差分IF输出阻抗是400 Ω。若SAW滤波器的输入阻抗大于或小于400 Ω,就需要附加匹配元件。

参与讨论
后参与讨论

//评论区

推荐阅读

智能网联汽车国际标准法规协调专家组(HEAG)召开工作会议

近年来智能网联汽车快速发展,新技术不断涌现,与相关产业融合度持续提升,正在推动全球汽车产业发生深刻变革。为应对此种形势,欧、美、日等汽车工业发达国家和地区都加大了智能网联汽车的国际标准法规协调的参与力度,在联合国世界车辆法规论坛(UN/WP.29)和国际标准化组织(ISO)层面,智能网联汽车相关国际标准法规协调活动正快速推进。 为更有效地支撑上述组织的国际标准法规协调活动,2017年全国汽车标准

0215jiejie | 发布于:2022-12-01 0评论 0赞

苹果推出搭载M2芯片的新款iPad Pro 799美元起售

据苹果官网,苹果推出搭载M2芯片的新款iPadPro。 11英寸wifi版起售价为799美元,wifi+蜂窝网络版起售价为999美元;12.9英寸wifi版起售价为1099美元,wifi+蜂窝网络版起售价为1299美元。

0215jiejie | 发布于:2022-10-19 0评论 0赞

新能源汽车领衔 “中国智造”加速登陆欧洲市场

全球五大车展之一巴黎车展时隔四年再度启幕。在这场被视为“全球汽车行业风向标”的盛会上,国内外汽车品牌云集,长城汽车、比亚迪等再次领衔中国汽车出海。 长城汽车欧洲区域总裁孟祥军表示:“欧洲是长城汽车最重要的海外市场之一,巴黎车展是长城汽车向欧洲市场展示GWM品牌和产品的最佳机会。长城汽车正在研究汽车行业碳排放的整个生命周期,到2025年,将推出50多款新能源产品,全力支持可再生能源使用,为全球用户

0215jiejie | 发布于:2022-10-19 0评论 0赞

严监管时代来临,电子烟“通配”大战走向何方?

针对通配烟弹厂商的一系列诉讼的结果,将对生产通配烟弹的品牌未来在电子烟行业的发展产生深远影响。 10月1日,《电子烟强制性国家标准》正式实施,中国电子烟监管全面生效。而在电子烟行业进入规范化、法治化阶段前夕,一场围绕着通配烟弹的争论在行业里发酵。 “通配”是电子烟从业者约定俗成的概念。换弹式电子烟由烟杆和烟弹组成,“通配”烟弹指的是非品牌商生产、可与品牌烟杆匹配使用的烟弹。多位业内人士表示,被

0215jiejie | 发布于:2022-10-19 0评论 0赞

Bourns 全新大功率分流电阻器

采用金属感应引脚,专用于大电流应用中进行精确测量 全新分流电阻器专为电池管理系统、大电流工业控制和电动汽车充电站 提供高可靠性、高成本效益的解决方案 美国柏恩Bourns全球知名电子组件领导制造供货商,宣布新增12款CSM2F系列功率分流电阻器,扩展其产品组合。全新系列采用铆接通孔金属传感引脚,可满足大电流应用中对电压测试点精确定位日益增长的需求。最新型Bourns?CSM2F系列分流电阻器

0215jiejie | 发布于:2022-10-18 0评论 0赞

请尊重元宇宙“这个筐”

元宇宙是个筐,啥都往里装,但区别在于有的像聚宝盆,有的像垃圾桶。国庆假期刚结束,中青宝“90后”董事长李逸伦便亲自上阵,玩起了元宇宙婚礼。靠着老板首秀和代言,中青宝顺势推出“MetaLove元囍”App,正式进军元宇宙婚礼赛道。 就产品而言,如同其他元宇宙产品,李逸伦的元宇宙婚礼“新奇与吐槽齐飞”:有人说是有趣的尝试,有人则认为像QQ炫舞结婚系统。要知道,QQ炫舞是一款推出了十余年的老游戏。

0215jiejie | 发布于:2022-10-13 0评论 0赞

边缘计算:突围商业模式痛点

截至8月末,中国5G基站总数达210.2万个,中国5G发展已经进入下半场。随着5G加速融入千行百业,互动直播、vCDN、安防监控等场景率先大规模落地,车联网、云游戏、工业互联网、智慧园区、智慧物流等场景也快速走向成熟,这些更大流量、更低时延、更高性能的场景涌现,对边缘计算的刚性需求势必爆发。 GrandViewResearch预测,即使在新型冠状病毒肺炎疫情肆虐全球的背景下,边缘计算和5G网络市

0215jiejie | 发布于:2022-10-13 0评论 0赞

商务部回应美商务部升级半导体等领域对华出口管制并调整出口管制“未经验证清单”

商务部新闻发言人10日就美商务部升级半导体等领域对华出口管制并调整出口管制“未经验证清单”应询答记者问。 有记者问:近日,美国商务部在半导体制造和先进计算等领域对华升级出口管制措施。同时,在将9家中国实体移出“未经验证清单”过程中,又将31家中国实体列入,请问中方对此有何回应? 对此,商务部新闻发言人回应称,中方注意到相关情况。首先,通过中美双方前一阶段共同努力,9家中国实体zui终

0215jiejie | 发布于:2022-10-13 0评论 0赞

TCL华星官宣与奔驰合作:推出全球首款横贯A柱的车载显示屏

今年1月,奔驰带来了VISIONEQSS概念车,其中控台采用了一块完全无缝的47.5英寸曲面显示屏,横贯整个A柱,令人印象深刻。今天,TCL华星正式官宣与奔驰达成合作,并认领了VISIONEQSS上这块全球首款横贯整个A柱曲面的车载显示屏。 根据TCL介绍,这款显示屏采用了完全无缝的超薄一体化设计,将仪表盘、中控与副驾娱乐显示融为一体,并能够与3D实时导航系统相辅相成。 同时,这块显示屏还采用

0215jiejie | 发布于:2022-10-12 0评论 0赞

半导体板块暴跌 谁最受伤

国庆假期后首日开盘,上证综指时隔5个月再次失守3000点,与此同时,半导体板块也再度走低,其中,北方华创、雅克科技等个股跌停。10月11日早盘期间,半导体板块持续下挫,北方华创、雅克科技再度跌停。截至下午收盘,北方华创、雅克科技维持跌停状态,华海清科、拓荆科技-U、盛美上海、清溢光电、海光信息的跌幅则超10%。同日,半导体板块中的119只个股中超五成呈现下跌趋势。 在半导体板块遭遇下挫的同时,北

0215jiejie | 发布于:2022-10-12 0评论 0赞