PNI SEN-S Magneto-Inductive Sensor ## **General Description** PNI Corporation's Magneto-Inductive (MI) sensors are based on patented technology that delivers breakthrough, cost-effective magnetic field sensing performance. These sensors change inductance by 100% over their field measurement range. This variable inductance property is used in a patented temperature and noise stabilized oscillator/counter circuit to detect field variations. The PNI 11096 ASIC is the recommended implementation of this patented circuit, and can be used with the Sen-S65 to construct a magnetometer with up to 3-axes. Advantages include low voltage and power, small size surface mount package, large signal noise immunity under all conditions, and a large dynamic range. Resolution and field measurement range are software configurable for a variety of applications. The measurement is very stable over temperature and inherently free from offset drift. These advantages have made PNI Corporation's MI sensors the choice for a wide variety of applications. #### **Features** - Low power: draws < 500 μA at 3 VDC - Small size: 6.3 x 2.3 x 2.2 mm - Large field measurement range: ±1000 μT (±11 Gauss) - High resolution field measurement: $0.015 \mu T$ (0.00015 Gauss) - Few external components: 11096 ASIC with two resistors per sensor. - Surface mount package supplied on Tape and Reel ### **Applications** - Handheld battery-powered devices with built-in compass feature. - High performance magnetic field sensing. - High performance solid state navigation equipment for automotive, marine, and aeronautic applications. - Direction finding features for any device where bearing or attitude indicators have value. - Magnetic object proximity sensing. #### **Ordering Information** | Part Number | Minimum Order Quantity | Package | |-------------|------------------------|-------------| | 11244 | <1000 | Cut Tape | | 11244 | 1000 | Tape & Reel | I # Specifications #### **CAUTION** Stresses beyond those listed under Table 1 may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. **Table 1. Absolute Maximum Ratings** | Symbol | Parameter | Maximum | |-------------------|--------------------------------|------------------| | V _{COIL} | Voltage across coil | 2.0 VDC | | V _B | Coil to case breakdown voltage | 200 VDC | | I _{IN} | Input pin current | 50 mA at 25 °C | | T_{STRG} | Storage temperature | −65 °C to 155 °C | **Table 2. Sensor Characteristics** | Parameter | Minimum | Maximum | Typical | |----------------------------------|---------|---------|--------------| | DC resistance at 25 °C ±15 °C a | 30 Ω | 45 Ω | | | DC resistance versus temperature | | | 0.4% / °C | | Inductance b | | | 400 - 600 μΗ | | Q factor ° | 3.5 | 5.5 | | | Operating Temperature | −55 °C | 140 °C | | | Storage Temperature | −65 °C | 155 °C | | - a. Determined with a DC source. - b. No DC bias, 100 kHz at 1 Vp-p, orthogonal to Earth's magnetic field. - c. Measured with an LCR meter. Table 3. Sensor Characteristics with PNI 11096 ASIC | Parameter | Minimum | Maximum | Typical | |--|----------------------|--------------------------|--------------------------------------| | Current (Measured at ASIC V_{cc}) 3 VDC, Rb = 43 Ω 5 VDC, Rb = 75 Ω | | 0.5 mA RMS
0.5 mA RMS | 0.4 mA RMS
0.42 mA RMS | | Field measurement range ^a 3 VDC, Rb = 43 Ω 5 VDC, Rb = 75 Ω | –1100 μT
–1100 μT | 1100 μT
1100 μT | | | Gain b 3 VDC, Rb = 43 Ω 5 VDC, Rb = 75 Ω | | | 27 - 38 count/μT
18 - 28 count/μT | | Linearity (error from best fit straight line at $\pm 300 \ \mu T$) | | 1% | 0.6% | | Resolution | | | 1/gain μT | | Frequency 3 VDC, Rb = 43 Ω (Within free Earth's magnetic field.) | | | 175 kHz | | Operating Temperature (when used with PNI 11096) | −20 °C | 70 °C | | - a. Field measurement range is defined as the monotonic region of the output characteristic curve. - b. Gain is defined as the change in the number of counts from the ASIC, when the period select is set to 512, per change in the magnetic field in μT . For situations requiring higher gain and less field measurement range, the gain and resolution can be increased by a factor of 2 by setting the ASIC period select to 1024. When setting higher period selects, be aware that the ASIC counter can overflow if the field is strong enough to drive the count beyond a signed 16-bit integer. Period select set to 1024 is the highest setting where it is impossible to overflow the counter. For more information, see "PNI-11096, 3-Axis Magneto-Inductive Sensor Driver and Controller with SPI Serial Interface" data sheet. # Typical Operating Characteristics: Sen-S65 (3VDC; Rb = 43 Ω) Figure 1. Temperature Characteristics Figure 2. Linearity versus Temperature Figure 3. Linearity versus Temperature, Normalized to Room Temperature (RMT) **Output Counts** is defined as the Period Select (PS) setting for the 11096 ASIC. For more information, see "PNI-11096, 3-Axis Magneto-Inductive Sensor Driver and Controller with SPI Serial Interface" data sheet. # Recommended Circuit Block Diagram Figure 4. Block Diagram Rb is dependent on the supply voltage. 5 VDC: $Rb = 75 \Omega$ 3 VDC: $Rb = 43 \Omega$ ## Package Information Figure 5. Outline Dimensions Unless otherwise specified: - Polarity mark indicates start winding of the Sensor (Black ink imprinted mark). - Tolerances are ± 0.05 mm. - Sensor case is to be soldered to a shield ground for optimum operation. - For effective mounting, the solder paste thickness should be between 0.12 and 0.17 mm.