FEATURES

- Compact size: 1 Form A (10A 250V

AC), 1 Form A 1 Form B (8A 250V AC)

- Latching types available
- Compliant with IEC EN61010-1. Reinforced insulation with 6 mm distance between input and output.
- Electrical life of Min. 2×10^{5} times (1 Form A type) realized with inductive load $(\cos \varphi=0.4, L / R=7 \mathrm{~ms}$, 5A 250V AC)
- Lead-and cadmium-free.
- Socket also available.

Product name		Part No.
1 Form A	Single side stable type	AW3810
	2 coil latching type	AW3812
1 Form A	Single side stable type	AW3820
	2 coil latching type	AW3822

Please see "DK relay socket" for details.

RoHS Directive compatibility information http://www.nais-e.com/

TYPICAL APPLICATIONS

- Control for industrial machines (machine tools, robotics)
- Output relays for temperature controllers, PLCs, timers, sensors.
- Measuring equipment
- Security equipment

SPECIFICATIONS

Contact

Arrangement			1 Form A	1 Form A 1 Form B
Initial contact resistance, max. (By voltage drop 6 V DC 1A)			$30 \mathrm{~m} \Omega$	
Contact material			Au-flashed AgSnO_{2} type	
Rating (resistive)	Nominal switching capacity	Resistive load	$\begin{aligned} & \text { 10A 250V AC } \\ & \text { 10A 30V DC } \end{aligned}$	8A 250V AC 8A 30V DC
		Inductive load $(\cos \varphi=0.4$, $\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$)	5A 250V AC	$\begin{gathered} 3.5 \mathrm{~A} 250 \mathrm{~V} \\ \mathrm{AC} \end{gathered}$
	Max. switching capacity	Resistive load	$\begin{gathered} 2,500 \mathrm{~V} \mathrm{~A}, \\ 300 \mathrm{~W} \end{gathered}$	$\begin{gathered} 2,000 \mathrm{~V} \mathrm{~A}, \\ 240 \mathrm{~W} \end{gathered}$
		Inductive load ($\cos \varphi=0.4$, L/R = 7ms)	1,250V A	875 V A
	Max. switching voltage		250V AC, 30V DC	
	Max. switching current		10 A	8 A
	Min. switching capacity (Reference value) ${ }^{\# 1}$		5 V 10 mA	
Expected life (min. operations)	Mechanical (at 300cpm)		5×10^{7}	
	Electrical (at 20cpm)	1 Form A inductive load	2×10^{5}	
		1 Form A resistive load 1 Form A 1 Form B resistive load 1 Form A 1 Form B inductive load	10^{5}	
Coil				
Nominal operating power			200 mW	

Characteristics

			1 Form A	1 Form A 1 Form B
Initial insulation resistance*1			Min. 1,000 m Ω (at 500 V DC)	
Initial breakdown voltage*2	Between open contacts		1,000 Vrms for 1 min .	
	Between contacts and coil		4,000 Vrms for 1 min .	
Surge voltage between coil and contact*3			Min. 10,000 V (initial)	
Operate time [Set time] ${ }^{* 4}$ (at nominal voltage)			Max. 10ms [Max. 10ms]	
Release time [Reset time] (without diode)*4 (at nominal voltage)			Max. 8ms [Max. 10ms]	
Temperature rise (at $\left.70^{\circ} \mathrm{C}\right)^{* 5}$			Max. $40^{\circ} \mathrm{C}$	
Shock resistance	Functional* ${ }^{*}$		Min. $98 \mathrm{~m} / \mathrm{s}^{2}$ \{10 G\}	
	Destructive*6		Min. $980 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}$	
Vibration resistance	Functional ${ }^{* 7}$		10 to 55 Hz at double amplitude of 1.5 mm	
	Destructive		10 to 55 Hz at double amplitude of 3.0 mm	
Conditions for operation, transport and storange*\& (Not freezing and condensing at low temperature)		Ambient temp.	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+158^{\circ} \mathrm{F} \end{aligned}$	
		Humidity	5 to 85\% R.H.	
Unit weight			Approx. 6g . 21 oz	

Remarks

${ }^{*_{1}}$ Measurement at same location as "Initial breakdown voltage" section
*2 Detection current: 10 mA
${ }^{*} 3$ Wave is standard shock voltage of $\pm 1.2 \times 50 \mathrm{~ms}$ according to JEC-212-1981
${ }^{*}$ Excluding contact bounce time
${ }^{* 5}$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{*}$ Half-wave pulse of sine wave: 6 ms
${ }^{* 7}$ Detection time: 10us
${ }^{{ }^{*}}$ Refer to 6 . Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT

ORDERING INFORMATION

	Ex. ADY					
Contact arrangement	Operating function	Auxiliary function				Coil voltage (V DC)
1: 1 Form A						
3: 1 Form A 1 Form B	0: Single side stable 2: 2 coil latching type	0: Plastic sealed (standard contact)	03: 3, 05: 5, 06: 6, 09: 9, 12: 12, 24: 24			

Note: UL/CSA, TÜV approved type is standard.

TYPES AND COIL DATA (at $\mathbf{2 0}^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

- Single side stable type

Contact arrangement	Part No.	Nominal voltage, V DC	Pick-up voltage, V DC (max.) (initial)	Drop-out voltage, V DC (min.) (initial)	Nominal operating current, $m A(\pm 10 \%)$	Coil resistance, Ω ($\pm 10 \%$)	Nominal operating power, mW	Max. allowable voltage, V DC
1 Form A	ADY10003	3	2.1	0.3	66.6	45	200	3.9
	ADY10005	5	3.5	0.5	40	125	200	6.5
	ADY10006	6	4.2	0.6	33.3	180	200	7.8
	ADY10012	12	8.4	1.2	16.6	720	200	15.6
	ADY10024	24	16.8	2.4	8.3	2,880	200	31.2
1 Form A 1 Form B	ADY30003	3	2.1	0.3	66.6	45	200	3.9
	ADY30005	5	3.5	0.5	40	125	200	6.5
	ADY30006	6	4.2	0.6	33.3	180	200	7.8
	ADY30012	12	8.4	1.2	16.6	720	200	15.6
	ADY30024	24	16.8	2.4	8.3	2,880	200	31.2

- 2 coil latching type

Contact arrangement	Part No.	Nominal voltage, V DC	Set voltage, V DC (max.) (initial)	Reset voltage, V DC (max.) (initial)	Nominal operating current, $\mathrm{mA}(\pm 10 \%)$		Coil resistance, Ω ($\pm 10 \%$)		Nominal operating power, mW		Max. allowable voltage, V DC
					Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
1 Form A	ADY12003	3	2.1	2.1	66.6	66.6	45	45	200	200	3.9
	ADY12005	5	3.5	3.5	40	40	125	125	200	200	6.5
	ADY12006	6	4.2	4.2	33.3	33.3	180	180	200	200	7.8
	ADY12012	12	8.4	8.4	16.6	16.6	720	720	200	200	15.6
	ADY12024	24	16.8	16.8	8.3	8.3	2,880	2,880	200	200	31.2
1 Form A 1 Form B	ADY32003	3	2.1	2.1	66.6	66.6	45	45	200	200	3.9
	ADY32005	5	3.5	3.5	40	40	125	125	200	200	6.5
	ADY32006	6	4.2	4.2	33.3	33.3	180	180	200	200	7.8
	ADY32012	12	8.4	8.4	16.6	16.6	720	720	200	200	15.6
	ADY32024	24	16.8	16.8	8.3	8.3	2,880	2,880	200	200	31.2

DIMENSIONS

1. 1 Form A

Single side stable type

2 coil latching type

General tolerance: $\pm 0.3 \pm .012$

PC board pattern (BOTTOM VIEW)
Single side stable type

2 coil latching type

Tolerance: $\pm 0.1 \pm .004$

Schematic (BOTTOM VIEW)
Single side stable

(Deenergized condition)

2 coil latching type

(Reset condition)
Since this is a polarized relay, the connection to the coil should be done according to the above schematic.

2. 1 Form A 1 Form B

Single side stable type

2 coil latching type

General tolerance: $\pm 0.3 \pm .012$

PC board pattern (BOTTOM VIEW)
Single side stable type

2 coil latching type

Tolerance: $\pm 0.1 \pm .004$

Schematic (BOTTOM VIEW)
Single side stable

(Deenergized condition)

2 coil latching type

(Reset condition)
Since this is a polarized relay, the connection to the coil should be done according to the above schematic.

REFERENCE DATA

1-(1). Maximum switching capacity (1 Form A)
Tested sample: ADY10024

1-(2). Maximum switching capacity (1 Form A 1 Form B)
Tested sample: ADY30024

2. Life curve (1 Form A, 1 Form A 1 Form B) Tested sample: ADY10024 (1 Form A), ADY30024 (1 Form A 1 Form B)

3-(1). Coil temperature rise
(1 Form A)
Tested sample: ADY10024
Ambient temperature: $20^{\circ} \mathrm{C}, 68^{\circ} \mathrm{F}, 6 \mathrm{pcs}$

3-(2). Coil temperature rise (1 Form A 1 Form B)
Tested sample: ADY30024
Ambient temperature: $20^{\circ} \mathrm{C}, 68^{\circ} \mathrm{F}, 6 \mathrm{pcs}$

4-(1). Ambient temperature characteristics (1 Form A)
Tested sample: ADY10024
Ambient temperature: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $158^{\circ} \mathrm{F}$, 6 pcs

4-(2). Ambient temperature characteristics (1 Form A 1 Form B)
Tested sample: ADY30024
Ambient temperature: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $158^{\circ} \mathrm{F}$, 6pcs

NOTES

1. Soldering should be done under the following conditions:
$250^{\circ} \mathrm{C} 482^{\circ}$ Fwithin 10 s
$300^{\circ} \mathrm{C} 572^{\circ}$ Fwithin 5 s
$350^{\circ} \mathrm{C} 662^{\circ}$ Fwithin 3s

2. External magnetic field

Since DY relays are highly sensitive polarized relays, their characteristics will be affected by a strong external magnetic field. Avoid using the relay under that condition.
3. When using, please be aware that the a contact and b contact sides of 1 Form A and 1 Form B types may go on simultaneously at operate time and release time.

For Cautions for Use, see Relay Technical Information .

