

Approved by:
Checked by:
Issued by:

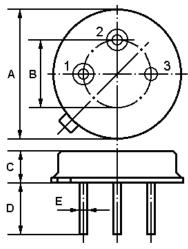
APPROVAL SHEET 承认书

PRODUCT: SAW RESONATOR

MODEL: R433A

TO-39 CASE

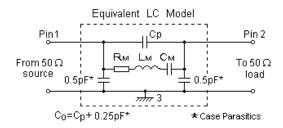
SHENZHEN HUAJINGDA ELECTRONICSCO.,LTD


深圳市华晶达电子有限公司

The R433.92 is a true one-port, surface-acoustic-wave (SAW) resonator in a low-profile metal TO-39 case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at 433.920 MHz.

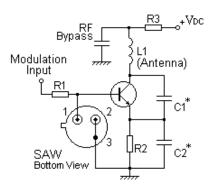
1. Package Dimension (TO-39)

Pin	Configuration			
1	Input / Output			
2	Output / Input			
3	Case Ground			

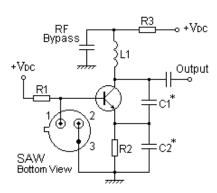

Dimension	Data (unit: mm)				
А	9.15±0.20				
В	5.08±0.20				
С	3.30±0.20				
D	3±0.20/5±0.20				
E	0.45±0.10				

2. Marking

R433A

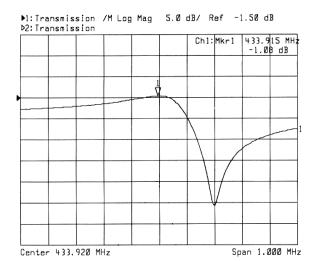

Laser Printing

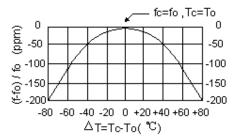
3. Equivalent LC Model and Test Circuit



4. Typical Application Circuits

1) Low-Power Transmitter Application


2) Local Oscillator Application



5. Typical Frequency Response

6. Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7. Performance

7-1.Maximum Ratings

Rating		Value	Unit
CW RF Power Dissipation	Р	+10	dBm
DC Voltage Between Any two Pins	V_{DC}	±30	٧
Storage Temperature Range	$T_{ m stg}$	-40 to +85	$^{\circ}$
Operating Temperature Range	T_{A}	-40 to +85	$^{\circ}$

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency	Absolute Frequency	f _C	433.845		433.995	MHz
(+25℃)	Tolerance from 433.920MHz	Δf_{C}			±75	kHz
Insertion Loss		IL		1.5	2.2	dB
Quality Factor	Unloaded Q	Q _U		10,350		
	50 Ω Loaded Q	Q _L		1,650		
Tananantana	Turnover Temperature	T ₀	25		55	°C
Temperature Stability	Turnover Frequency	f ₀		f _C		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C²
Frequency Aging	Absolute Value during the First Year	f _A		≤10		ppm/yr
DC Insulation Resis	tance Between Any Two Pins		1.0			ΜΩ
RF Equivalent RLC Model	Motional Resistance	R _M		19	29	Ω
	Motional Inductance	L _M		72.0546		μН
	Motional Capacitance	См		1.8690		fF
	Pin 1 to Pin 4 Static Capacitance	C ₀	1.8	2.1	2.4	pF

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

NOTE:

- 1. The center frequency, f_C , is measured at the minimum IL point with the resonator in the 50Ω test system.
- 2. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$.
- 3. Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent vears.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_C , may be calculated from: $f = f_0 [1 FTC (T_0 T_C)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between Pin1 and Pin4. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_C , IL, 3 dB bandwidth, f_C versus T_C , and C_0 .
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
 - For questions on technology, prices and delivery, please contact our sales offices or e-mail hjd@szhjd.com