

Dimensions in inches and (millimeters)

- For general purpose applications.
- The SD103 series is a metal-on-silicon Schottky barrier device which is protected by a PN junction guard ring. The low forward voltage drop and fast switching make it ideal for protection of MOS devices, steering, biasing, and coupling diodes for fast switching and low logic level applications. Other applications are click suppression, efficient full wave bridges in telephone subsets, and blocking diodes in rechargeable low voltage battery systems.
- ◆ This diode is also available in Mini-MELF case with the type designation LL103A ... LL103C, DO-35 case with the type designations SD103A .. SD103C and SOD-123 case with type designations SD103W ... SD103CW.

MECHANICAL DATA

Case: SOD-323 Plastic Package

Weight: approx. 0.004g

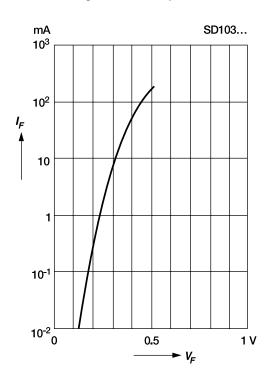
MAXIMUM RATINGS AND THERMAL CHARACTERISTICS

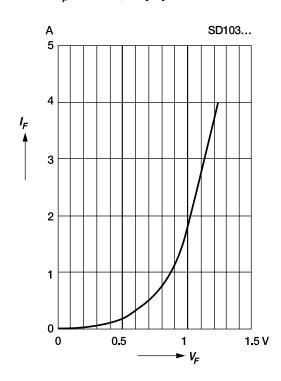
Ratings at 25°C ambient temperature unless otherwise specified

		SYMBOL	VALUE	UNIT
Peak Inverse Voltage	SD103AWS	V _{RRM}	40	Volts
	SD103BWS	VRRM	30	Volts
	SD103CWS	V _{RRM}	20	Volts
Power Dissipation at T _{amb} = 25°C		P _{tot}	150 ¹⁾	mW
Single Cycle Surge 10 μs Square Wave		IFSM	2	Amps
Junction Temperature		Tj	125 ¹⁾	°C
Storage Temperature Range		Ts	– 55 to +150 ¹⁾	°C
Thermal Resistance Junction to Ambient Air		R⊕JA	650	°C/W

NOTES

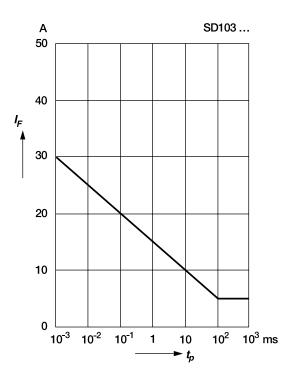
(1) Valid provided that electrodes are kept at ambient temperature

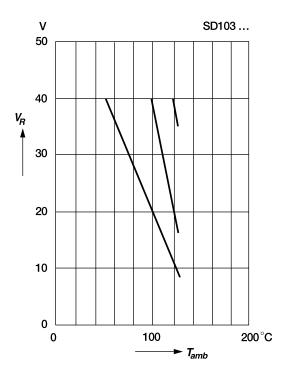

PAGE 1 Customer Service: 400 618 1238 www.yongyutai.com


		SYMBOL	MIN.	TYP.	MAX.	UNIT
Leakage Current at $V_R = 30 \text{ V}$ at $V_R = 20 \text{ V}$ at $V_R = 10 \text{ V}$	SD103AWS SD103BWS SD103CWS	IR IR IR	- - -	- - -	5 5 5	μΑ μΑ μΑ
Forward Voltage Drop at IF = 20 mA at IF = 200 mA		VF VF	- -	- -	0.37 0.6	V
Junction Capacitance at V _R = 0 V, f = 1 MHz		C _{tot}	-	50	-	pF
Reverse Recovery Time at $I_F = I_R = 50$ mA to 200 mA, recover to 0.1 I_R		trr	-	10	-	ns

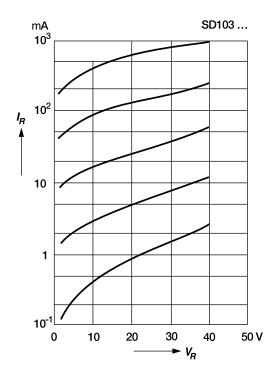
RATINGS AND CHARACTERISTICS SD103AWS THRU SD103CAWS

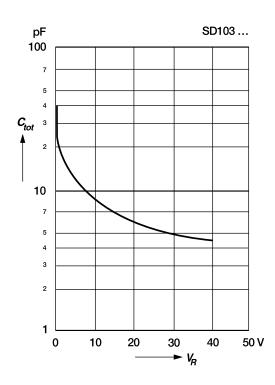
Typical variation of fwd. current vs. fwd. voltage for primary conduction through the Schottky barrier


Typical high current forward conduction curve $t_p = 300 \text{ ms}$, duty cycle = 2%



Typical non repetitive forward surge current versus pulse width


Rectangular pulse


Blocking voltage deration versus temperature at various average forward currents

Typical variation of reverse current at various temperatures

Typical capacitance versus reverse voltage

