EPROM/ROM-Based 8-Bit Microcontroller Series

Devices Included in this Data Sheet:

- FM8P55E/57E : EPROM devices
- FM8P55/57 : Mask ROM devices

FEATURES

- Only 47 single word instructions
- All instructions are single cycle except for program branches which are two-cycle
- 13-bit wide instructions
- All ROM/EPROM area GOTO/FGOTO instruction
- All ROM/EPROM area subroutine CALL/FCALL instruction
- 8-bit wide data path
- 5-level deep hardware stack
- Operating speed: DC-20 MHz clock input

DC-100 ns instruction cycle

Device	Pins \#	I/O \#	EPROM/ROM (Byte)	RAM (Byte)
FM8P55/55E	28	20	512	48
FM8P57/57E	28	20	2 K	96

- Direct, indirect addressing modes for data accessing
- 8-bit real time clock/counter (Timer0) with 8-bit programmable prescaler
- Internal Power-on Reset (POR)
- Built-in Low Voltage Detector (LVD) for Brown-out Reset (BOR)
- Power-up Reset Timer (PWRT) and Oscillator Start-up Timer(OST)
- On chip Watchdog Timer (WDT) with internal oscillator for reliable operation and soft-ware watch-dog enable/disable control
- Three I/O ports IOA, IOB and IOC with independent direction control
- 16 soft-ware control pull-high pins: Port B/Port C
- 8 soft-ware control pull-down pins:IOAO~A3/IOB0~B3
- 2 soft-ware control open-drain pins: IOC6/IOC7
- One internal interrupt source: Timer0 overflow; One external interrupt source: INT pin
- Wake-up from SLEEP by Port B/IOC4/IOC5 input falling
- Power saving SLEEP mode
- Programmable Code Protection
- Selectable oscillator options:
- ERC: External Resistor/Capacitor Oscillator
- XT: Crystal/Resonator Oscillator
- HF: High Frequency Crystal/Resonator Oscillator
- LF: Low Frequency Crystal Oscillator
- Wide-operating voltage range:
- EPROM : 2.3 V to 5.5 V
- ROM : 2.3 V to 5.5 V

GENERAL DESCRIPTION

The FM8P55/57 series is a family of low-cost, high speed, high noise immunity, EPROM/ROM-based 8-bit CMOS microcontrollers. It employs a RISC architecture with only 47 instructions. All instructions are single cycle except for program branches which take two cycles. The easy to use and easy to remember instruction set reduces development time significantly.
The FM8P55/57 series consists of Power-on Reset (POR), Brown-out Reset (BOR), Power-up Reset Timer (PWRT), Oscillator Start-up Timer(OST), Watchdog Timer, EPROM/ROM, SRAM, tri-state I/O port, I/O pull-high/open-drain/pull-down control, Power saving SLEEP mode, real time programmable clock/counter, Interrupt, Wake-up from SLEEP mode, and Code Protection for EPROM products. There are four oscillator configurations to choose from, including the power-saving LP (Low Power) oscillator and cost saving RC oscillator. The FM8P55/55E address 512×13 of program memory, and the FM8P57/57E address $2 \mathrm{~K} \times 13$ of program memory. The FM8P55/57 can directly or indirectly address its register files and data memory. All special function registers including the program counter are mapped in the data memory.

BLOCK DIAGRAM

FEELING TECHNOLOGY

PIN CONNECTION

PDIP, SOP

	\square		
тоскı-1		28]RStb
Vdd ${ }^{\text {2 }}$		27]OSCI
NC-3		26	Osco
Vss-4		25	boc7
NC-5		24	-IOC6
IOAO[6		23	Ioc5
IOA1[7	FM8P55/55E	22	-IOC4
IOA2[8	FM8P57/57E	21	IOC3
IOA3-9		20	IOC2
IOBO/INT-10		19	IOC1
IOB1■11		18	口וOco
IOB2■12		17	ЈIOB7
Іов3-13		16	
IOB4■14		15	IOB5

SSOP

PIN DESCRIPTIONS

Name	I/O	Description
IOAO ~ IOA3	I/O	IOAO ~ IOA3 as bi-direction I/O port
IOBO/INT	I/O	Bi-direction I/O pin with system wake-up function / External interrupt input
IOB1 ~ IOB7	I/O	Bi-direction I/O port with system wake-up function
IOCO ~ IOC7	I/O	Bi-direction I/O port
TOCKI	I	Clock input to Timer0. Must be tied to Vss or Vdd, if not in use, to reduce current consumption
RSTB	I	System clear (RESET) input. This pin is an active low RESET to the device.
OSCI	I	X'tal type: Oscillator crystal input RC type: Clock input of RC oscillator
OSCO	O	X'tal type: Oscillator crystal output. RC mode: Outputs with the instruction cycle rate
Vdd	-	Positive supply
Vss	-	Ground

Legend: I=input, O=output, I/O=input/output

1.0 MEMORY ORGANIZATION

FM8P55/57 memory is organized into program memory and data memory.

1.1 Program Memory Organization

The FM8P55/55E have a 9-bit Program Counter (PC) capable of addressing a 512×13 program memory space. The FM8P57/57E have an 11-bit Program Counter capable of addressing a $2 \mathrm{~K} \times 13$ program memory space. The RESET vector for the FM8P55/55E is at 1FFh. The RESET vector for the FM8P57/57E is at 7FFh. The H/W interrupt vector is at 008h. And the S/W interrupt vector is at 002h. FM8P57/57E has program memory size greater than 1K words, but the CALL and GOTO instructions only have a 10 -bit address range. This 10 -bit address range allows a branch within a 1 K program memory page size. To allow CALL and GOTO instructions to address the entire 2 K program memory address range for FM8P57/57E, there is another one bit to specify the program memory page. This paging bit comes from the $\mathrm{PCHBUF}<2>$ bit. When doing a CALL or GOTO instruction, the user must ensure that page bit PCHBUF $<2>$ are programmed so that the desired program memory page is addressed. When one of the return instructions is executed, the entire 11-bit PC is POPed from the stack. Therefore, manipulation of the PCHBUF <2> is not required for the return instructions.
User can use "PAGE" instruction to change memory page and maintains the program memory page. Otherwise, user can use "FCALL(far call)/FGOTO(far goto)" instructions to program user's code.

FIGURE 1.1: Program Memory Map and STACK

1.2 Data Memory Organization

Data memory is composed of Special Function Registers and General Purpose Registers.
The General Purpose Registers are accessed either directly or indirectly through the FSR register.
The Special Function Registers are registers used by the CPU and peripheral functions to control the operation of the device.
In FM8P57/57E, the data memory is partitioned into four banks. Switching between these banks requires the RP1 and RPO bits in the FSR register to be configured for the desired bank. User can use "BANK" instruction to change the data memory bank.

TABLE 1.1: Registers File Map for FM8P57/57E Series

N/A \qquad

05h	IOSTA
06h	IOSTB
07h	IOSTC

TABLE 1.2: Registers File Map for FM8P55/55E Series

Address	Description
00 h	INDF
01 h	TMR0
02 h	PCL
03 h	STATUS
04 h	FSR
05 h	PORTA
06 h	PORTB
07 h	PORTC
08 h	PCON
09 h	WUCON
0 h	PCHBUF
0 Bh	PDCON
0 Ch	BPHCON
0 h	CPHCON
0 h	INTEN
$0 F h$	INTFLAG
$10 \mathrm{~h} \sim 3 \mathrm{Fh}$	General Purpose Registers

N/A OPTION

$05 h$	IOSTA
	IOSTB
	IOSTC

TABLE 1.3: The Registers Controlled by OPTION or IOST Instructions

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
N/A (w)	OPTION	-	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0
05h (w)	IOSTA	Port A I/O Control Register							
06h (w)	IOSTB	Port B I/O Control Register							
07h (w)	IOSTC	Port C I/O Control Register							

TABLE 1.4: Operational Registers Map

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
00h (r/w)	INDF	Uses contents of FSR to address data memory (not a physical register)							
01h (r/w)	TMR0	8-bit real-time clock/counter							
02h (r/w)	PCL	Low order 8 bits of PC							
03h (r/w)	STATUS	GP2	GP1	GP0	TO	$\overline{\mathrm{PD}}$	Z	DC	C
04h (r/w)	FSR	RP1 ${ }^{(2)}$	RPO ${ }^{(2)}$	Indirect data memory address pointer					
05h (r/w)	PORTA	-	-	-	-	IOA3	IOA2	IOA1	IOAO
06h (r/w)	PORTB	IOB7	IOB6	IOB5	IOB4	IOB3	IOB2	IOB1	IOB0
07h (r/w)	PORTC	$10 C 7$	IOC6	IOC5	IOC4	IOC3	IOC2	IOC1	IOCO
08h (r/w)	PCON	WDTE	EIS	LVDTE	ROC	-	-	ODC67	/WUC45
09h (r/w)	WUCON	/WUB7	/WUB6	/WUB5	/WUB4	/WUB3	/WUB2	/WUB1	/WUBO
OAh (r/w)	PCHBUF ${ }^{(1)}$	-	-	-	-	-	Upper 3 bits Buffer of PC		
OBh (r/w)	PDCON	/PDB3	/PDB2	/PDB1	/PDB0	/PDA3	/PDA2	/PDA1	/PDA0
OCh (r/w)	BPHCON	/PHB7	/PHB6	/PHB5	/PHB4	/PHB3	/PHB2	/PHB1	/PHB0
ODh (r/w)	CPHCON	/PHC7	/PHC6	/PHC5	/PHC4	/PHC3	/PHC2	/PHC1	/PHC0
OEh (r/w)	INTEN	GIE	-	-	-	-	INTIE	-	TOIE
OFh (r/w)	INTFLAG	-	-	-	-	-	INTIF	-	TOIF

Legend: - = unimplemented, read as ' 0 ',
Note 1 : There is only 1 bit in FM8P55/55E. And there are 3 bits in FM8P57/57E.
2 : For FM8P55/55E, these bits are not used, read as ' 1 '

2.0 FUNCTIONAL DESCRIPTIONS

2.1 Operational Registers

2.1.1 INDF (Indirect Addressing Register)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
00h (r/w)	INDF	Uses contents of FSR to address data memory (not a physical register)							

The INDF Register is not a physical register. Any instruction accessing the INDF register can actually access the register pointed by FSR Register. Reading the INDF register itself indirectly (FSR="0") will read $00 h$. Writing to the INDF register indirectly results in a no-operation (although status bits may be affected). The bits 5-0 of FSR register are used to select up to 64 registers (address: 00h ~ 3Fh). In FM8P57/57E, the data memory is partitioned into four banks. Switching between these banks requires the RP1 and RPO bits in the FSR register to be configured for the desired bank. The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers. All Special Function Registers and some of General Purpose Registers from other banks are mirrored in bank 0 for code reduction and quicker access.

Accessed Bank	RP1:RP0
0	00
1	01
2	10
3	11

EXAMPLE 2.1: INDIRECT ADDRESSING

- Register file 38 contains the value 10h
- Register file 39 contains the value 0Ah
- Load the value 38 into the FSR Register
- A read of the INDF Register will return the value of 10 h
- Increment the value of the FSR Register by one (@FSR=39h)
- A read of the INDR register now will return the value of OAh.

FIGURE 2.1: Direct/Indirect Addressing for FM8P55/55E

Direct Addressing

Indirect Addressing

FEELING TECHNOLOGY

FIGURE 2.2: Direct/Indirect Addressing for FM8P57/57E

Direct Addressing

2.1.2 TMR0 (Time Clock/Counter register)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
01h (r/w)	TMR0	8-bit real-time clock/counter							

The Timer0 is a 8-bit timer/counter. The clock source of Timer0 can come from the instruction cycle clock or by an external clock source (TOCKI pin) defined by TOCS bit (OPTION $<5>$). If TOCKI pin is selected, the TimerO is increased by TOCKI signal rising/falling edge (selected by TOSE bit (OPTION<4>)).
The prescaler is assigned to TimerO by clearing the PSA bit (OPTION $<3>$). In this case, the prescaler will be cleared when TMRO register is written with a value.

2.1.3 PCL (Low Bytes of Program Counter) \& Stack

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
02h (r/w)	PCL	Low order 8 bits of PC							

FM8P55/57 devices have a 9-bit (for FM8P55/55E) or 11-bit (for FM8P57/57E) wide Program Counter (PC) and five-level deep 9-bit (or 11-bit) hardware push/pop stack. The low byte of PC is called the PCL register. This register is readable and writable. The high byte of $P C$ is called the $P C H$ register. This register contains the $P C<10: 8>$ bits and is not directly readable or writable. All updates to the PCH register go through the PCHBUF register. As a program instruction is executed, the Program Counter will contain the address of the next program instruction to be executed. The PC value is increased by one, every instruction cycle, unless an instruction changes the PC.
For a GOTO instruction, the $\mathrm{PC}<9: 0>$ is provided by the GOTO instruction word. The $\mathrm{PC}<10>$ is updated from the PCHBUF $<2>$. The PCL register is mapped to $\mathrm{PC}<7: 0>$, and the PCHBUF register is not updated.
For a CALL instruction, the $\mathrm{PC}<9: 0>$ is provided by the CALL instruction word. The $\mathrm{PC}<10>$ is updated from the PCHBUF<2>. The next PC will be loaded (PUSHed) onto the top of STACK. The PCL register is mapped to $\mathrm{PC}<7: 0>$, and the PCHBUF register is not updated.
For a FGOTO instruction, the $\mathrm{PC}<10: 0>$ is provided by the FGOTO instruction word. The PCL register is mapped to $\mathrm{PC}<7: 0>$, the $\mathrm{PCHBUF}<2>$ bit is also updated from the FGOTO instruction word, and the PCHBUF<1:0> bits are not updated.
For a FCALL instruction, the PC $<10: 0>$ is provided by the FCALL instruction word. The next PC will be loaded (PUSHed) onto the top of STACK. The PCL register is mapped to $\mathrm{PC}<7: 0>$, the $\mathrm{PCHBUF}<2>$ bit is also updated from the FCALL instruction word, and the PCHBUF<1:0> bits are not updated.
For a RETIA, RETFIE, or RETURN instruction, the PC are updated (POPed) from the top of STACK. The PCL
register is mapped to $\mathrm{PC}<7: 0>$, and the PCHBUF register is not updated.
For any instruction where the PCL is the destination (excluding TBL instruction), the $\mathrm{PC}<7: 0>$ is provided by the instruction word or ALU result. However, the PC<10:8> will come from the PCHBUF $<2: 0>$ bits (PCHBUF $\rightarrow P C H$). For TBL instruction, the $\mathrm{PC}<7: 0>$ is provided by the ALU result, and the $\mathrm{PC}<9: 8>$ are not changed. The $\mathrm{PC}<10>$ will come from the $\mathrm{PCH}<2>$ bit.
PCHBUF register is never updated with the contents of PCH.

FIGURE 2.2: Loading of PC in Different Situations

Situation 1: GOTO Instruction

Situation 2: CALL Instruction

Situation 3: FGOTO Instruction

Situation 4: FCALL Instruction

FEELING

Situation 5: RETIA, RETFIE, or RETURN Instruction

Situation 6: Instruction with PCL as destination (except TBL instruction)

ALU result<7:0> or Opcode<7:0>

Situation 7: TBL Instruction

Note: 1. Bits $\mathrm{PC}<10: 9>$ and $\mathrm{PCHBUF}<2: 1>$ are unimplemented for FM8P55/55E.
2. PCHBUF is used only for instruction with PCL as destination (except TBL instruction) for FM8P55/55E. PCHBUF is used for instruction with PCL as destination, GOTO and CALL instructions for FM8P57/57E.

FEELING

2.1.4 STATUS (Status Register)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
03h (r/w)	STATUS	GP2	GP1	GP0	$\overline{\overline{T O}}$	$\overline{\mathrm{PD}}$	Z	DC	C

This register contains the arithmetic status of the ALU, the RESET status. If the STATUS Register is the destination for an instruction that affects the Z , DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the $\overline{\mathrm{TO}}$ and $\overline{\mathrm{PD}}$ bits are not writable. Therefore, the result of an instruction with the STATUS Register as destination may be different than intended. For example, CLRR STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS Register as 000u u1uu (where $u=$ unchanged).

C : Carry/borrow bit.
ADDAR, ADDIA
= 1, a carry occurred.
$=0$, a carry did not occur.
SUBAR, SUBIA
= 1, a borrow did not occur.
$=0$, a borrow occurred.
Note : A subtraction is executed by adding the two's complement of the second operand. For rotate (RRR, RLR) instructions, this bit is loaded with either the high or low order bit of the source register.

DC : Half carry/half borrow bit.
ADDAR, ADDIA
= 1, a carry from the 4th low order bit of the result occurred.
$=0$, a carry from the 4th low order bit of the result did not occur.
SUBAR, SUBIA
= 1, a borrow from the 4th low order bit of the result did not occur.
$=0$, a borrow from the 4th low order bit of the result occurred.
Z: Zero bit.
$=1$, the result of a logic operation is zero.
$=0$, the result of a logic operation is not zero.
$\overline{\text { PD }}$: Power down flag bit.
= 1, after power-up or by the CLRWDT instruction.
$=0$, by the SLEEP instruction.
$\overline{\text { TO }}$: Time overflow flag bit.
= 1, after power-up or by the CLRWDT or SLEEP instruction.
= 0, a watch-dog time overflow occurred.
GP2:GP0 : General purpose read/write bits.

2.1.5 FSR (Indirect Data Memory Address Pointer)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
04h (r/w)	FSR	RP1	RP0	Indirect data memory address pointer					

Bit5:Bit0 : Select registers address in the indirect addressing mode. See 2.1.1 for detail description.
RP1:RP0 : For FM8P55/55E, these bits are not used. Read as " 1 "s.
For FM8P57/57E, these bits are used to switching the bank of four data memory banks. User can use "BANK" instruction to change bank. See 2.1.1 for detail description.

FEELING TECHNOLOGY

2.1.6 PORTA, PORTB \& PORTC (Port Data Registers)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
05h (r/w)	PORTA	-	-	-	-	IOA3	IOA2	IOA1	IOA0
06h (r/w)	PORTB	IOB7	IOB6	IOB5	IOB4	IOB3	IOB2	IOB1	IOB0
07h (r/w)	PORTC	IOC7	IOC6	IOC5	IOC4	IOC3	IOC2	IOC1	IOC0

Reading the port (PORTA, PORTB, PORTC register) reads the status of the pins independent of the pin's input/output modes. Writing to these ports will write to the port data latch.
PORTA is a 4-bit port data Register. Only the low order 4 bits are used (PORTA<3:0>). Bits 7-4 are unimplemented and read as ' 0 's.
PORTB and PORTC are 8-bit port data registers.

2.1.7 PCON (Power Control Register)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
08h (r/w)	PCON	WDTE	EIS	LVDTE	ROC	-	-	ODC67	/WUC45

WUC45 : = 0, Enable the input falling wake-up function of IOC4 and IOC5 pins.
$=1$, Disable the input falling wake-up function of IOC4 and IOC5 pins.
ODC67 : = 0, Disable the internal open-drain of IOC6 and IOC7 pins.
= 1, Enable the internal open-drain of IOC6 and IOC7 pins.
Bit3:Bit2 : Not used. Read as "0"s.
ROC : R-option function of IOCO and IOC1 pins enable bit.
$=0$, Disable the R-option function.
$=1$, Enable the R-option function. In this case, if a $430 \mathrm{~K} \Omega$ external resister is connected/disconnected to Vss, the status of IOC0 (IOC1) is read as " 0 " $/ 11$ ".

LVDTE : LVDT (low voltage detector) enable bit.
= 0, Disable LVDT.
= 1, Enable LVDT.
EIS : Define the function of IOBO/INT pin.
$=0$, IOBO (bi-directional I/O pin) is selected. The path of INT is masked.
$=1$, INT (external interrupt pin) is selected. In this case, the I/O control bit of IOBO must be set to " 1 ". The path of Port B input change of IOBO pin is masked by hardware, the status of INT pin can also be read by way of reading PORTB.

WDTE : WDT (watch-dog timer) enable bit.
$=0$, Disable WDT.
= 1, Enable WDT.

2.1.8 WUCON (Port B Input Falling Wake-up Control Register)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
09h (r/w)	WUCON	MWUB7	/WUB6	/WUB5	/WUB4	/WUB3	/WUB2	/WUB1	/WUB0

/WUBO : = 0, Enable the input falling wake-up function of IOBO pin.

$$
=1 \text {, Disable the input falling wake-up function of IOBO pin. }
$$

IWUB1 : = 0, Enable the input falling wake-up function of IOB1 pin.

FEELING TECHNOLOGY
$=1$, Disable the input falling wake-up function of IOB1 pin.
/WUB2 : = 0, Enable the input falling wake-up function of IOB2 pin.
$=1$, Disable the input falling wake-up function of IOB2 pin.
IWUB3 : = 0 , Enable the input falling wake-up function of IOB3 pin.
$=1$, Disable the input falling wake-up function of IOB3 pin.
/WUB4 : = 0, Enable the input falling wake-up function of IOB4 pin.
$=1$, Disable the input falling wake-up function of IOB4 pin.
IWUB5 : = 0 , Enable the input falling wake-up function of IOB5 pin.
$=1$, Disable the input falling wake-up function of IOB5 pin.
/WUB6 : = 0, Enable the input falling wake-up function of IOB6 pin.
= 1, Disable the input falling wake-up function of IOB6 pin.
/WUB7 : = 0, Enable the input falling wake-up function of IOB7 pin.
$=1$, Disable the input falling wake-up function of IOB7 pin.

2.1.9 PCHBUF (High Byte Buffer of Program Counter)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
OAh (r/w)	PCHBUF	-	-	-	-	-	Upper 3 bits Buffer of PC		

PCHBUF<2> : Program memory page selection bit.

$$
\begin{aligned}
& =0, \text { Page } 0 . \\
& =1, \text { Page } 1 .
\end{aligned}
$$

User can use "PAGE" instruction to change memory page and maintains the program memory page. Otherwise, user can use "FGOTO" (far goto), or "FCALL" (far call) instructions to program user's code.
There is only 1 bit in FM8P55/55E. And there are 3 bits in FM8P57/57E.
See 2.1.3 for detail description.

2.1.10 PDCON (Pull-down Control Register)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
0Bh (r/w)	PDCON	/PDB3	/PDB2	/PDB1	/PDB0	/PDA3	/PDA2	/PDA1	/PDA0

IPDAO : = 0, Enable the internal pull-down of IOAO pin.
$=1$, Disable the internal pull-down of IOAO pin.

IPDA1 : = 0, Enable the internal pull-down of IOA1 pin.
= 1, Disable the internal pull-down of IOA1 pin.
IPDA2 : = 0, Enable the internal pull-down of IOA2 pin.
$=1$, Disable the internal pull-down of IOA2 pin.

IPDA3 : = 0, Enable the internal pull-down of IOA3 pin.
= 1, Disable the internal pull-down of IOA3 pin.

IPDB0 : = 0, Enable the internal pull-down of IOB0 pin.
$=1$, Disable the internal pull-down of IOBO pin.

FEELING TECHNOLOGY

IPDB1 : = 0, Enable the internal pull-down of IOB1 pin.
= 1, Disable the internal pull-down of IOB1 pin.

IPDB2 : = 0, Enable the internal pull-down of IOB2 pin.
$=1$, Disable the internal pull-down of IOB2 pin.

IPDB3 : = 0, Enable the internal pull-down of IOB3 pin.
= 1, Disable the internal pull-down of IOB3 pin.

2.1.11 BPHCON (PortB Pull-high Control Register)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
0Ch (r/w)	BPHCON	/PHB7	/PHB6	/PHB5	/PHB4	/PHB3	/PHB2	/PHB1	/PHB0

IPHBO : = 0, Enable the internal pull-high of IOBO pin.
$=1$, Disable the internal pull-high of IOBO pin.
/PHB1 : = 0, Enable the internal pull-high of IOB1 pin.
= 1, Disable the internal pull-high of IOB1 pin.
IPHB2 : = 0, Enable the internal pull-high of IOB2 pin.
= 1, Disable the internal pull-high of IOB2 pin.
IPHB3 : = 0, Enable the internal pull-high of IOB3 pin.
= 1, Disable the internal pull-high of IOB3 pin.
IPHB4 : = 0, Enable the internal pull-high of IOB4 pin.
$=1$, Disable the internal pull-high of IOB4 pin.
/PHB5 : = 0, Enable the internal pull-high of IOB5 pin.
= 1, Disable the internal pull-high of IOB5 pin.
IPHB6 : = 0, Enable the internal pull-high of IOB6 pin.
= 1, Disable the internal pull-high of IOB6 pin.
IPHB7 : = 0, Enable the internal pull-high of IOB7 pin.
= 1, Disable the internal pull-high of IOB7 pin.

2.1.12 CPHCON (PortC Pull-high Control Register)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
0Dh (r/w)	CPHCON	$/ \mathrm{PHC} 7$	$/ \mathrm{PHC6}$	/PHC5	/PHC4	/PHC3	/PHC2	/PHC1	/PHC0

IPHCO : = 0, Enable the internal pull-high of IOCO pin.
= 1, Disable the internal pull-high of IOCO pin.
IPHC1 : = 0, Enable the internal pull-high of IOC1 pin.
= 1, Disable the internal pull-high of IOC1 pin.
/PHC2 : = 0, Enable the internal pull-high of IOC2 pin.
= 1, Disable the internal pull-high of IOC2 pin.
/PHC3 : = 0, Enable the internal pull-high of IOC3 pin.
$=1$, Disable the internal pull-high of IOC3 pin.

FEELING TECHNOLOGY

IPHC4 : = 0, Enable the internal pull-high of IOC4 pin.
= 1, Disable the internal pull-high of IOC4 pin.
IPHC5 : = 0, Enable the internal pull-high of IOC5 pin.
$=1$, Disable the internal pull-high of IOC5 pin.
/PHC6 : = 0, Enable the internal pull-high of IOC6 pin.
= 1, Disable the internal pull-high of IOC6 pin.
IPHC7 : = 0, Enable the internal pull-high of IOC7 pin.
$=1$, Disable the internal pull-high of IOC7 pin.

2.1.13 INTEN (Interrupt Mask Register)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
OEh (r/w)	INTEN	GIE	-	-	-	-	INTIE	-	TOIE

TOIE : TimerO overflow interrupt enable bit.
$=0$, Disable the Timer0 overflow interrupt.
= 1, Enable the Timer0 overflow interrupt.
Bit1 : Not used. Read as "0".
INTIE : External INT pin interrupt enable bit.
$=0$, Disable the External INT pin interrupt.
= 1, Enable the External INT pin interrupt.
Bit6:BIT3 : Not used. Read as "0"s.
GIE : Global interrupt enable bit.
$=0$, Disable all interrupts.
= 1, Enable all un-masked interrupts.
Note : When an interrupt event occur with the GIE bit and its corresponding interrupt enable bit are all set, the GIE bit will be cleared by hardware to disable any further interrupts. The RETFIE instruction will exit the interrupt routine and set the GIE bit to re-enable interrupt.

2.1.14 INTFLAG (Interrupt Status Register)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
0Fh (r/w)	INTFLAG	-	-	-	-	-	INTIF	-	T0IF

TOIF : Timer0 overflow interrupt flag. Set when Timer0 overflows, reset by software.
Bit1 : Not used. Read as " 0 ".
INTIF : External INT pin interrupt flag. Set by rising/falling (selected by INTEDG bit (OPTION<6>)) edge on INT pin, reset by software.

Bit7:BIT3 : Not used. Read as "0"s.

2.1.15 ACC (Accumulator)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
N/A (r/w)	ACC	Accumulator							

Accumulator is an internal data transfer, or instruction operand holding. It can not be addressed.

2.1.16 OPTION Register

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
N/A (w)	OPTION	-	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0

Accessed by OPTION instruction.
By executing the OPTION instruction, the contents of the ACC Register will be transferred to the OPTION Register. The OPTION Register is a 7-bit wide, write-only register which contains various control bits to configure the Timer0/WDT prescaler, Timer0, and the external INT interrupt.
The OPTION Register are "write-only" and are set all " 1 "s except INTEDG bit.
PS2:PS0 : Prescaler rate select bits.

PS2:PSO	Timer0 Rate	WDT Rate		
0	0	0	$1: 2$	$1: 1$
0	0	1	$1: 4$	$1: 2$
0	1	0	$1: 8$	$1: 4$
0	1	1	$1: 16$	$1: 8$
1	0	0	$1: 32$	$1: 16$
1	0	1	$1: 64$	$1: 32$
1	1	0	$1: 128$	$1: 64$
1	1	1	$1: 256$	$1: 128$

PSA : Prescaler assign bit.
= 1, WDT (watch-dog timer).
$=0$, TMRO (Timer0).
TOSE : TMRO source edge select bit.
= 1, Falling edge on TOCKI pin.
$=0$, Rising edge on TOCKI pin.
TOCS : TMRO clock source select bit.
= 1, External TOCKI pin.
$=0$, internal instruction clock cycle.
INTEDG : Interrupt edge select bit.
$=1$, interrupt on rising edge of INT pin.
$=0$, interrupt on falling edge of INT pin.
Bit7 : Not used.

2.1.17 IOSTA, IOSTB \& IOSTC (Port I/O Control Registers)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
N/A (w)	IOSTA	Port A I/O Control Register							
N/A (w)	IOSTB	Port B I/O Control Register							
N/A (w)	IOSTC	Port C I/O Control Register							

Accessed by IOST instruction.
The Port I/O Control Registers are loaded with the contents of the ACC Register by executing the IOST R (05h~07h) instruction. A ' 1 ' from a IOST Register bit puts the corresponding output driver in hi-impedance state (input mode). A ' 0 ' enables the output buffer and puts the contents of the output data latch on the selected pins (output mode). The IOST Registers are "write-only" and are set (output drivers disabled) upon RESET.

2.2 I/O Ports

Port A, port B and port C are bi-directional tri-state I/O ports. Port A is a 4-pin I/O port. Port, port C are 8-pin I/O ports. All I/O pins (IOA<3:0>, IOB<7:0> and IOC<7:0>) have data direction control registers (IOSTA, IOSTB, IOSTC) which can configure these pins as output or input.
IOB and IOC have its corresponding pull-high control bits (BPHCON and CPHCON registers) to enable the weak internal pull-high. The weak pull-high is automatically turned off when the pin is configured as an output pin.
$I O A<3: 0>$ and $I O B<3: 0>$ have its corresponding pull-down control bits (PDCON register) to enable the weak internal pull-down. The weak pull-down is automatically turned off when the pin is configured as an output pin.
IOC $<7: 6>$ have its corresponding open-drain control bit (ODC67 bit (PCON $<1>$)) to enable the open-drain output when these pins are configured to be an output pin.
IOAO and IOA1 are the R-option pins enabled by setting the ROC bit (PCON $<4>$). When the R-option function is used, it is recommended that IOAO and IOA1 are used as output pins, and read the status of IOAO and IOA1 before these pins are configured to be an output pin.
$I O B$ and $I O C<5: 4>$ also provide the input falling wake-up function. Each pin has its corresponding input change wake-up enable bits (WUCON register and /WUC45 bit (PCON $<0>$)) to select the input falling wake-up source. The IOBO is also an external interrupt input signal by setting the EIS bit (PCON<6>). In this case, IOBO input falling wake-up function will be disabled by hardware even if it is enabled by software.

FIGURE 2.3: Block Diagram of I/O PINs
IOA3 ~ IOAO, IOC7 ~ IOCO :

Pull-down is not shown in the figure

IOBO/INT :

Pull-high/pull-down and open-drain are not shown in the figure

IOB7 ~ IOB1 :

Pull-high/pull-down and open-drain are not shown in the figure

FEELING TECHNOLOGY

2.3 Timer0/WDT \& Prescler

2.3.1 Timer0

The Timer0 is a 8-bit timer/counter. The clock source of Timer0 can come from the internal clock or by an external clock source (TOCKI pin).

2.3.1.1 Using Timer0 with an Internal Clock : Timer mode

Timer mode is selected by clearing the TOCS bit (OPTION<5>). In timer mode, the timer0 register (TMR0) will increment every instruction cycle (without prescaler). If TMRO register is written, the increment is inhibited for the following two cycles.

2.3.1.2 Using Timer0 with an External Clock : Counter mode

Counter mode is selected by setting the TOCS bit (OPTON $<5>$). In this mode, Timer0 will increment either on every rising or falling edge of pin TOCKI. The incrementing edge is determined by the source edge select bit TOSE (OPTION<4>).
The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.
When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of TOCKI with the internal phase clocks is accomplished by sampling the prescaler output on the T2 and T4 cycles of the internal phase clocks. Therefore, it is necessary for TOCKI to be high for at least 2 Tosc and low for at least 2 Tosc.
When a prescaler is used, the external clock input is divided by the asynchronous prescaler. For the external clock to meet the sampling requirement, the ripple counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc divided by the prescaler value.

2.3.2 Watchdog Timer (WDT)

The Watchdog Timer (WDT) is a free running on-chip RC oscillator which does not require any external components. So the WDT will still run even if the clock on the OSCI and OSCO pins is turned off, such as in SLEEP mode. During normal operation or in SLEEP mode, a WDT time-out will cause the device reset and the $\overline{\mathrm{TO}}$ bit (STATUS<4>) will be cleared.
The WDT can be disabled by clearing the control bit WDTE (PCON<7>) to " 0 ".
The WDT has a nominal time-out period of 18 ms (without prescaler). If a longer time-out period is desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT controlled by the OPTION register. Thus, the longest time-out period is approxmately 2.3 seconds.
The CLRWDT instruction clears the WDT and the prescaler, if assigned to the WDT, and prevents it from timing out and generating a device reset.
The SLEEP instruction resets the WDT and the prescaler, if assigned to the WDT. This gives the maximum SLEEP time before a WDT Wake-up Reset.

2.3.3 Prescaler

An 8-bit counter (down counter) is available as a prescaler for the Timer0, or as a postscaler for the Watchdog Timer (WDT). Note that the prescaler may be used by either the Timer0 module or the WDT, but not both. Thus, a prescaler assignment for the Timer0 means that there is no prescaler for the WDT, and vice-versa.
The PSA bit (OPTION<3>) determines prescaler assignment. The PS<2:0> bits (OPTION<2:0>) determine prescaler ratio.
When the prescaler is assigned to the Timer0 module, all instructions writing to the TMRO register will clear the prescaler. When it is assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT. The prescaler is neither readable nor writable. On a RESET, the prescaler contains all ' 1 's.
To avoid an unintended device reset, CLRWDT or CLRR TMRO instructions must be executed when changing the prescaler assignment from Timer0 to the WDT, and vice-versa.

FIGURE 2.4: Block Diagram of The Timer0/WDT Prescaler

2.4 Interrupts

The FM8P55/57 series has up to two sources of interrupt:

1. External interrupt INT pin.
2. TMRO overflow interrupt.

INTFLAG is the interrupt flag register that recodes the interrupt requests in the relative flags.
A global interrupt enable bit, GIE (INTEN<7>), enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. Individual interrupts can be enabled/disabled through their corresponding enable bits in INTEN register regardless of the status of the GIE bit.
When an interrupt event occur with the GIE bit and its corresponding interrupt enable bit are all set, the GIE bit will be cleared by hardware to disable any further interrupts, and the next instruction will be fetched from address 008h. The interrupt flag bits must be cleared by software before re-enabling GIE bit to avoid recursive interrupts.
The RETFIE instruction exits the interrupt routine and set the GIE bit to re-enable interrupt.
The flag bit in INTFLAG register is set by interrupt event regardless of the status of its mask bit. Reading the INTFLAG register will be the logic AND of INTFLAG and INTEN.
When an interrupt is generated by the INT instruction, the next instruction will be fetched from address 002 h .

2.4.1 External INT Interrupt

External interrupt on INT pin is rising or falling edge triggered selected by INTEDG (OPTION<6>).
When a valid edge appears on the INT pin the flag bit INTIF (INTFLAG<2>) is set. This interrupt can be disabled by clearing INTIE bit (INTEN<2>).

2.4.2 Timer0 Interrupt

An overflow (FFh $\rightarrow 00 \mathrm{~h}$) in the TMRO register will set the flag bit TOIF (INTFLAG<0>). This interrupt can be disabled by clearing TOIE bit (INTEN<0>).

2.5 Power-down Mode (SLEEP)

Power-down mode is entered by executing a SLEEP instruction.
When SLEEP instruction is executed, the $\overline{P D}$ bit (STATUS $<3>$) is cleared, the $\overline{\mathrm{TO}}$ bit is set, the watchdog timer will be cleared and keeps running, and the oscillator driver is turned off.
All I/O pins maintain the status they had before the SLEEP instruction was executed.

2.5.1 Wake-up from SLEEP Mode

The device can wake-up from SLEEP mode through one of the following events:

1. RSTB reset.
2. WDT time-out reset (if enabled).
3. PORTB/IOC4/IOC5 input falling.

External RSTB reset and WDT time-out reset will cause a device reset. The $\overline{P D}$ and $\overline{\text { TO }}$ bits can be used to determine the cause of device reset. The $\overline{P D}$ bit is set on power-up and is cleared when SLEEP instruction is executed. The $\overline{\mathrm{TO}}$ bit is cleared if a WDT time-out occurred.
For the device to wake-up through an PORTB/IOC4/IOC5 input falling event, and the program will execute next PC after wake-up. Any pin which corresponding /WUBn bit (WUCON<7:0>) or /WUC45 bit (PCON $<0>$) is set to " 1 " or configured as output will be excluded from this function.
The system wake-up delay time is 18 ms plus 128 oscillator cycle time.

2.6 Reset

FM8P55/57 devices may be RESET in one of the following ways:

1. Power-on Reset (POR)
2. Brown-out Reset (BOR)
3. RSTB Pin Reset
4. WDT time-out Reset

Some registers are not affected in any RESET condition. Their status is unknown on Power-on Reset and unchanged in any other RESET. Most other registers are reset to a "reset state" on Power-on Reset, RSTB or WDT Reset.
A Power-on RESET pulse is generated on-chip when Vdd rise is detected. To use this feature, the user merely ties the RSTB pin to Vdd.
On-chip Low Voltage Detector (LVD) places the device into reset when Vdd is below a fixed voltage. This ensures that the device does not continue program execution outside the valid operation Vdd range. Brown-out RESET is typically used in AC line or heavy loads switched applications.
A RSTB or WDT Wake-up from SLEEP also results in a device RESET, and not a continuation of operation before SLEEP.
The $\overline{\mathrm{TO}}$ and $\overline{\mathrm{PD}}$ bits (STATUS $<4: 3>$) are set or cleared depending on the different reset conditions.

2.6.1 Power-up Reset Timer(PWRT)

The Power-up Reset Timer provides a nominal 18ms delay after Power-on Reset (POR), Brown-out Reset (BOR), RSTB Reset or WDT time-out Reset. The device is kept in reset state as long as the PWRT is active.
The PWDT delay will vary from device to device due to Vdd, temperature, and process variation.

2.6.2 Oscillator Start-up Timer(OST)

The OST timer provides a 128 oscillator cycle delay (from OSCI input) after the PWRT delay (18ms) is over. This delay ensures that the X'tal oscillator or resonator has started and stabilized. The device is kept in reset state as long as the OST is active.
This counter only starts incrementing after the amplitude of the OSCI signal reaches the oscillator input thresholds.

2.6.3 Reset Sequence

When Power-on Reset (POR), Brown-out Reset (BOR), RSTB Reset or WDT time-out Reset is detected, the reset sequence is as follows:

1. The reset latch is set and the PWRT \& OST are cleared.
2. When the internal POR, BOR, RSTB Reset or WDT time-out Reset pulse is finished, then the PWRT begins counting.
3. After the PWRT time-out, the OST is activated.
4. And after the OST delay is over, the reset latch will be cleared and thus end the on-chip reset signal. The totally system reset delay time is 18 ms plus 128 oscillator cycle time.

FIGURE 2.5: Simplified Block Diagram of on-chip Reset Circuit

FIGURE 2.6: Time-out Sequence on Power-up (RSTB Pin Tied to Vdd)

Note: $T_{\text {PWRT }}=18 \mathrm{~ms} ; \mathrm{T}_{\text {OST }}=128$ oscillator cycle time

FEELING TECHNOLOGY

FIGURE 2.7: Time-out Sequence on Power-up (RSTB Pin Not Tied to Vdd)

Note: $T_{\text {PWRT }}=18 \mathrm{~ms}$; $T_{\text {OSt }}=128$ oscillator cycle time

TABLE 2.1: Reset Conditions for All Registers

Register	Address	Power-on Reset Brown-out Reset	RSTB Reset WDT Reset
ACC	N/A	xxxx xxxx	uuuu uuuu
OPTION	N/A	-011 1111	-011 1111
IOSTA	05h	---- 1111	---- 1111
IOSTB	06h	11111111	11111111
IOSTC	07h	11111111	11111111
INDF	00h	xxxx xxxx	uuuu uuuu
TMR0	01h	xxxx xxxx	uuuu uuuu
PCL	02h	11111111	11111111
STATUS	03h	0001 1xxx	000\# \#uuu
FSR	04h	55: 11xx xxxx 57: $x x x x$ xxxx	55: 11uu uuuu 57: uuuu uuuu
PORTA	05h	---- $x x x x$	---- uuuu
PORTB	06h	xxxx x xxx	uuuu uuuu
PORTC	07h	xxxx xxxx	uuuu uuuu
PCON	08h	1010 ----	1010 ----
WUCON	09h	00000000	00000000
PCHBUF	OAh	55: ---- ---0	55: ---- ---0
PDCON	OBh	11111111	11111111
BPHCON	OCh	11111111	11111111
CPHCON	ODh	11111111	11111111
INTEN	0Eh	0--- -0-0	0--- -0-0
INTFLAG	OFh	---- -0-0	---- -0-0
General Purpose Registers	10~3Fh	xxxx xxxx	uuuu uuuu

Legend: $u=$ unchanged, $x=$ unknown, $-=$ unimplemented,
\# = refer to the following table for possible values.

FEELING TECHNOLOGY

TABLE 2.2: $\overline{\mathrm{TO}} / \overline{\mathrm{PD}}$ Status after Reset

$\overline{\mathrm{TO}}$	$\overline{\mathrm{PD}}$	RESET was caused by
1	1	Power-on Reset
1	1	Brown-out reset
u	u	RSTB Reset during normal operation
1	0	RSTB Reset during SLEEP
0	1	WDT Reset during normal operation
0	0	WDT Reset during SLEEP

Legend: u = unchanged
TABLE 2.3: Events Affecting $\overline{\mathrm{TO}} / \overline{\mathrm{PD}}$ Status Bits

Event	$\overline{\mathrm{TO}}$	$\overline{\mathrm{PD}}$
Power-on	1	1
WDT Time-Out	0	u
SLEEP instruction	1	0
CLRWDT instruction	1	1

Legend: $u=$ unchanged

2.7 Hexadecimal Convert to Decimal (HCD)

Decimal format is another number format for FM8P55/57. When the content of the data memory has been assigned as decimal format, it is necessary to convert the results to decimal format after the execution of ALU instructions. When the decimal converting operation is processing, all of the operand data (including the contents of the data memory (RAM), accumulator (ACC), immediate data, and look-up table) should be in the decimal format, or the results of conversion will be incorrect.
Instruction DAA can convert the ACC data from hexadecimal to decimal format after any addition operation and restored to ACC.
The conversion operation is illustrated in example 2.2.
EXAMPLE 2.2: DAA CONVERSION

MOVIA	90h	;Set immediate data = decimal format number "90" (ACC ¢90h)
MOVAR	30h	;Load immediate data "90" to data memory address 30H
MOVIA	10h	;Set immediate data = decimal format number "10" (ACC < 10h)
ADDAR	30h, 0	;Contents of the data memory address 30 H and ACC are binary-added ;the result loads to the ACC $(A C C \leftarrow A O h, C \leftarrow 0)$
DAA		;Convert the content of ACC to decimal format, and restored to ACC ;The result in the ACC is " 00 " and the carry bit C is " 1 ". This represents the ;decimal number "100"

Instruction DAS can convert the ACC data from hexadecimal to decimal format after any subtraction operation and restored to ACC.
The conversion operation is illustrated in example 2.3.

EXAMPLE 2.3: DAS CONVERSION

MOVIA	10h	;Set immediate data = decimal format number "10" (ACC < 10h)
MOVAR	30h	;Load immediate data "10" to data memory address 30H
MOVIA	20h	;Set immediate data = decimal format number "20" (ACC < 20h)
SUBAR	30h, 0	;Contents of the data memory address 30 H and ACC are binary-subtracted ;the result loads to the ACC (ACC $\leftarrow F O h, C \leftarrow 0)$
DAS		;Convert the content of ACC to decimal format, and restored to ACC ;The result in the ACC is " 90 " and the carry bit C is " 0 ". This represents the ;decimal number " -10 "

2.8 Oscillator Configurations

FM8P55/57 can be operated in four different oscillator modes. Users can program two configuration bits (Fosc $<1: 0>$) to select the appropriate modes:

- LF: Low Frequency Crystal Oscillator
- XT: Crystal/Resonator Oscillator
- HF: High Frequency Crystal/Resonator Oscillator
- ERC: External Resistor/Capacitor Oscillator

In LF, XT, or HF modes, a crystal or ceramic resonator in connected to the OSCI and OSCO pins to establish oscillation. When in LF, XT, or HF modes, the devices can have an external clock source drive the OSCI pin. The ERC device option offers additional cost savings for timing insensitive applications. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext), the operating temperature, and the process parameter.

FIGURE 2.8: HF, XT or LF Oscillator Modes (Crystal Operation or Ceramic Resonator)

FIGURE 2.9: HF, XT or LF Oscillator Modes (External Clock Input Operation)

FIGURE 2.10: ERC Oscillator Mode

2.9 Configurations Word

TABLE 2.4: Configurations Word

bit	Name	Description
1, 0	Fosc<1:0>	$\begin{aligned} & \text { Oscillator Selection Bits } \\ & =1,1 \rightarrow \text { ERC mode (default) } \\ & =1,0 \rightarrow \text { HF mode } \\ & =0,1 \rightarrow \text { XT mode } \\ & =0,0 \rightarrow \text { LF mode } \end{aligned}$
2	WDTEN	Watchdog Timer Enable Bit = 1, WDT enabled (default) = 0, WDT disabled
3	PROTECT	$\begin{aligned} & \text { Code Protection Bit } \\ & =1 \text {, EPROM code protection off (default) } \\ & =0, \text { EPROM code protection on } \\ & \hline \end{aligned}$
5, 4	LVDT<1:0>	```Low Voltage Detector Selection Bit =1,1 -> disable (default) = 1,0-> enable, LVDT voltage = 2.0V, controlled by SLEEP = 0,1 -> enable, LVDT voltage = 2.0V = 0,0 -> enable, LVDT voltage =3.6V```
7, 6	OSCD<1:0>	```Instruction Period Selection Bits \(=1,1 \rightarrow\) four oscillator periods (default) \(=1,0 \rightarrow\) two oscillator periods \(=0,1 \rightarrow\) one oscillator period \(=0,0 \rightarrow\) eight oscillator periods```
8	PMOD	Power Mode Selection Bit = 1, Non-power saving (default) $=0$, Power saving
12~9	-	Unused

3.0 INSTRUCTION SET

Mnemonic, Operands		Description	Operation	Cycles	Status Affected
BCR	R, bit	Clear bit in R	$0 \rightarrow \mathrm{R}<\mathrm{b}>$	1	-
BSR	R, bit	Set bit in R	$1 \rightarrow \mathrm{R}<\mathrm{b}>$	1	-
BTRSC	R, bit	Test bit in R, Skip if Clear	Skip if $R=0$	$1 / 2 / 3^{(1)}$	-
BTRSS	R, bit	Test bit in R, Skip if Set	Skip if $R=1$	$1 / 2 / 3{ }^{(1)}$	-
NOP		No Operation	No operation	1	-
CLRWDT		Clear Watchdog Timer	00h \rightarrow WDT, OOh \rightarrow WDT prescaler	1	$\overline{\mathrm{TO}}, \overline{\mathrm{PD}}$
OPTION		Load OPTION register	ACC \rightarrow OPTION	1	-
SLEEP		Go into power-down mode	$\begin{aligned} & \text { OOh } \rightarrow \text { WDT, } \\ & \text { OOh } \rightarrow \text { WDT prescaler } \end{aligned}$	1	TO , PD
TBL		Table look-up	PC<7:0> + ACC \rightarrow PC<7:0> PC<9:8> unchanged PCHBUF<2> \rightarrow PC<10>	1	C, DC, Z
INT		S/W interrupt	$\begin{aligned} & \mathrm{PC}+1 \rightarrow \text { Top of Stack, } \\ & 002 \mathrm{~h} \rightarrow \mathrm{PC} \end{aligned}$	2	-
DAA		Adjust ACC's data format from HEX to DEC after any addition operation	ACC(hex) \rightarrow ACC(dec)	1	C
DAS		Adjust ACC's data format from HEX to DEC after any subtraction operation	ACC(hex) \rightarrow ACC(dec)	1	-
RETURN		Return from subroutine	Top of Stack \rightarrow PC	2	-
RETFIE		Return from interrupt, set GIE bit	$\begin{aligned} & \text { Top of Stack } \rightarrow \text { PC, } \\ & 1 \rightarrow \text { GIE } \end{aligned}$	2	-
CLRA		Clear ACC	00h \rightarrow ACC	1	Z
IOST	R	Load IOST register	ACC \rightarrow IOST register	1	-
CLRR	R	Clear R	00h \rightarrow R	1	Z
MOVAR	R	Move ACC to R	ACC \rightarrow R	1	-
MOVR	R, d	Move R	$\mathrm{R} \rightarrow$ dest	1	Z
DECR	R, d	Decrement R	$\mathrm{R}-1 \rightarrow$ dest	1	Z
DECRSZ	R, d	Decrement R, Skip if 0	R-1 \rightarrow dest, Skip if result $=0$	$1 / 2 / 3^{(1)}$	-
INCR	R, d	Increment R	$\mathrm{R}+1 \rightarrow$ dest	1	Z
INCRSZ	R, d	Increment R, Skip if 0	$\mathrm{R}+1 \rightarrow$ dest, Skip if result $=0$	$1 / 2 / 3^{(1)}$	-
ADDAR	R, d	Add ACC and R	$\mathrm{R}+\mathrm{ACC} \rightarrow$ dest	1	C, DC, Z
SUBAR	R, d	Subtract ACC from R	$\mathrm{R}-\mathrm{ACC} \rightarrow$ dest	1	C, DC, Z
ADCAR	R, d	Add ACC and R with Carry	$\mathrm{R}+\mathrm{ACC}+\mathrm{C} \rightarrow$ dest	1	C, DC, Z
SBCAR	R, d	Subtract ACC from R with Carry	$\mathrm{R}+\overline{\mathrm{ACC}}+\mathrm{C} \rightarrow$ dest	1	C, DC, Z
ANDAR	R, d	AND ACC with R	ACC and $\mathrm{R} \rightarrow$ dest	1	Z
IORAR	R, d	Inclusive OR ACC with R	ACC or $\mathrm{R} \rightarrow$ dest	1	Z
XORAR	R, d	Exclusive OR ACC with R	R xor $\mathrm{ACC} \rightarrow$ dest	1	Z
COMR	R, d	Complement R	$\overline{\mathrm{R}} \rightarrow$ dest	1	Z
RLR	R, d	Rotate left f through Carry	$\begin{aligned} & R<7>\rightarrow C, \\ & R<6: 0>\rightarrow \text { dest }<7: 1>, \\ & C \rightarrow \text { dest }<0> \end{aligned}$	1	C

FEELING TECHNOLOGY

RRR	R, d	Rotate right f through Carry	$\begin{aligned} & C \rightarrow \text { dest }<7>, \\ & R<7: 1>\rightarrow \text { dest<6:0>, } \\ & R<0>\rightarrow C \end{aligned}$	1	C
SWAPR	R, d	Swap R	$\begin{aligned} & \mathrm{R}<3: 0>\rightarrow \text { dest<7:4>, } \\ & \mathrm{R}<7: 4>\rightarrow \text { dest<3:0> } \end{aligned}$	1	-
MOVIA	1	Move Immediate to ACC	$1 \rightarrow$ ACC	1	-
ADDIA	1	Add ACC and Immediate	$1+$ ACC \rightarrow ACC	1	C, DC, Z
SUBIA	1	Subtract ACC from Immediate	$1-\mathrm{ACC} \rightarrow$ ACC	1	C, DC, Z
ANDIA	1	AND Immediate with ACC	ACC and I \rightarrow ACC	1	Z
IORIA	1	OR Immediate with ACC	ACC or I \rightarrow ACC	1	Z
XORIA	1	Exclusive OR Immediate to ACC	ACC xor I \rightarrow ACC	1	Z
RETIA	I	Return, place Immediate in ACC	$1 \rightarrow$ ACC, Top of Stack \rightarrow PC	2	-
BANK	1	Move Immediate to memory bank bits	$1 \rightarrow \mathrm{RP}<1: 0>$	1	-
PAGE	I	Move Immediate to program page bits	$1 \rightarrow$ PCHBUF<2>	1	-
CALL	I	Call subroutine	$\begin{aligned} & \mathrm{PC}+1 \rightarrow \text { Top of Stack, } \\ & \mathrm{l} \rightarrow \mathrm{PC}<9: 0> \\ & \mathrm{PCHBUF}<2>\rightarrow \text { PC }<10> \end{aligned}$	2	-
GOTO	I	Unconditional branch	$\begin{aligned} & I \rightarrow P C<9: 0> \\ & P C H B U F<2>\rightarrow P C<10> \end{aligned}$	2	-
FCALL	I	Call subroutine	$\begin{aligned} & \mathrm{PC}+1 \rightarrow \text { Top of Stack, } \\ & 1 \rightarrow \mathrm{PC}<10: 0> \\ & \mathrm{l}<10>\rightarrow \mathrm{PCHBUF}<2> \\ & \hline \end{aligned}$	3	-
FGOTO	1	Unconditional branch	$\begin{aligned} & 1 \rightarrow P C<10: 0> \\ & 1<10>\rightarrow P C H B U F<2> \end{aligned}$	3	-

Note: 1.2 cycles for skip, else 1 cycle. (3 cycles if skip and followed by a 2-word instruction FCALL/FGOTO)
2. bit : Bit address within an 8-bit register R

R : Register address (00h to 3Fh)
I : Immediate data
ACC : Accumulator
d : Destination select;
=0 (store result in ACC)
$=1$ (store result in file register R)
dest : Destination
PC : Program Counter
PCHBUF : High Byte Buffer of Program Counter
WDT : Watchdog Timer Counter
GIE : Global interrupt enable bit
$\overline{\mathrm{TO}}$: Time-out bit
PD : Power-down bit
C : Carry bit
DC : Digital carry bit
Z: Zero bit

FEELING TECHNOLOGY

ADCAR	Add ACC and R with Carry
Syntax:	ADCAR R, d
Operands:	$0 \leq R \leq 63$
	$\mathrm{d} \in[0,1]$
Operation:	$\mathrm{R}+\mathrm{ACC}+\mathrm{C} \rightarrow$ dest
Status Affected:	C, DC, Z
Description:	Add the contents of the ACC register and register ' R ' with Carry. If ' d ' is 0 the result is stored in the ACC register. If ' d ' is ' 1 ' the result is stored back in register ' R '.
Cycles:	1
ADDAR	Add ACC and R
Syntax:	ADDAR R, d
Operands:	$0 \leq R \leq 63$
Operation:	ACC $+\mathrm{R} \rightarrow$ dest
Status Affected:	C, DC, Z
Description:	Add the contents of the ACC register and register ' R '. If ' d ' is 0 the result is stored in the ACC register. If ' d ' is ' 1 ' the result is stored back in register ' R '.
Cycles:	1
ADDIA	Add ACC and Immediate
Syntax:	ADDIA I
Operands:	$0 \leq 1 \leq 255$
Operation:	ACC + I \rightarrow ACC
Status Affected:	C, DC, Z
Description:	Add the contents of the ACC register with the 8 -bit immediate ' I '. The result is placed in the ACC register.
Cycles:	1
ANDAR	AND ACC and R
Syntax:	ANDAR R, d
Operands:	$\begin{aligned} & 0 \leq R \leq 63 \\ & d \in[0,1] \end{aligned}$
Operation:	ACC and $\mathrm{R} \rightarrow$ dest
Status Affected:	Z
Description:	The contents of the ACC register are AND'ed with register ' R '. If ' d ' is 0 the result is stored in the ACC register. If ' d ' is ' 1 ' the result is stored back in register ' R '.
Cycles:	1
ANDIA	AND Immediate with ACC
Syntax:	ANDIA I
Operands:	$0 \leq 1 \leq 255$
Operation:	ACC AND I \rightarrow ACC
Status Affected:	Z
Description:	The contents of the ACC register are AND'ed with the 8 -bit immediate ' 1 '. The result is placed in the ACC register.
Cycles:	1

FEELING TECHNOLOGY

BANK	Move Immediate to memory bank bits
Syntax:	BANK I
Operands:	$0 \leq I \leq 3$
Operation:	$1 \rightarrow R P<1: 0>$
Status Affected:	None
Description:	The memory bank bits are loaded with the 2-bit immediate ' 1 '.
Cycles:	1
BCR	Clear Bit in R

FEELING TECHNOLOGY

CALL	Subroutine Call
Syntax:	CALL I
Operands:	$0 \leq I \leq 1023$
Operation:	$\mathrm{PC}+1 \rightarrow$ Top of Stack;
	$1 \rightarrow \mathrm{PC}<9: 0>$
	$\mathrm{PCHBUF}<2>\rightarrow \mathrm{PC}<10>$
Status Affected:	None
Description:	Subroutine call. First, return address (PC+1) is pushed onto the stack. The 10-bit immediate
	address is loaded into PC bits <10:0>. CALL is a two-cycle instruction.
Cycles:	2
CLRA	Clear ACC

FEELING TECHNOLOGY

DAA	Adjust ACC's data format from HEX to DEC
Syntax:	DAA
Operands:	None
Operation:	ACC(hex) \rightarrow ACC(dec)
Status Affected:	C
Description:	Convert the ACC data from hexadecimal to decimal format after any addition operation and restored to ACC.
Cycles:	1
DAS	Adjust ACC's data format from HEX to DEC
Syntax:	DAS
Operands:	None
Operation:	ACC(hex) \rightarrow ACC(dec)
Status Affected:	None
Description:	Convert the ACC data from hexadecimal to decimal format after any subtraction operation and restored to ACC.
Cycles:	1
DECR	Decrement R
Syntax:	DECR R, d
Operands:	$\begin{aligned} & 0 \leq R \leq 63 \\ & d \in[0,1] \end{aligned}$
Operation:	$\mathrm{R}-1 \rightarrow$ dest
Status Affected:	Z
Description:	Decrement register ' R '. If ' d ' is 0 the result is stored in the ACC register. If ' d ' is 1 the result is stored back in register ' R '.
Cycles:	1
DECRSZ	Decrement R, Skip if 0
Syntax:	DECRSZ R, d
Operands:	$\begin{aligned} & 0 \leq R \leq 63 \\ & d \in[0,1] \end{aligned}$
Operation:	$\mathrm{R}-1 \rightarrow$ dest; skip if result $=0$
Status Affected:	None
Description:	The contents of register ' R ' are decremented. If ' d ' is 0 the result is placed in the ACC register. If ' d ' is 1 the result is placed back in register ' R '. If the result is 0 , the next instruction, which is already fetched, is discarded and a NOP is executed instead making it a 2 -cycle instruction.
Cycles:	1/2 (3 cycles if skip and followed by a 2-word instruction FCALL/FGOTO)
FCALL	Subroutine Call
Syntax:	FCALL I
Operands:	$0 \leq 1 \leq 2047$
Operation:	PC +1 \rightarrow Top of Stack; $1 \rightarrow \mathrm{PC}<10 \cdot 0>$
	$1<10>\rightarrow$ PCHBUF<2>
Status Affected:	None
Description:	Subroutine call. First, return address (PC+1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. FCALL is a two-word (three-cycle) instruction.
Cycles:	3

FEELING TECHNOLOGY

FGOTO	Unconditional Branch
Syntax:	FGOTO I
Operands:	$0 \leq I \leq 2047$
Operation:	I \rightarrow PC $<10: 0>$
	I<10> \rightarrow PCHBUF<2>
Status Affected:	None
Description:	FGOTO is an unconditional branch. The 11-bit immediate value is loaded into PC bits
	$<10: 0>$. FGOTO is a two-word (three-cycle) instruction.
Cycles:	3
GOTO	Unconditional Branch

FEELING TECHNOLOGY

IORAR	OR ACC with R
Syntax:	IORAR R, d
Operands:	$0 \leq R \leq 63$
	$d \in[0,1]$
Operation:	ACC or $\mathrm{R} \rightarrow$ dest
Status Affected:	Z
Description:	Inclusive OR the ACC register with register ' R '. If ' d ' is 0 the result is placed in the ACC register. If ' d ' is 1 the result is placed back in register ' R '.
Cycles:	1
IORIA	OR Immediate with ACC
Syntax:	IORIA I
Operands:	$0 \leq 1 \leq 255$
Operation:	ACC or I \rightarrow ACC
Status Affected:	Z
Description:	The contents of the ACC register are OR'ed with the 8 -bit immediate ' I '. The result is placed in the ACC register.
Cycles:	1
IOST	Load IOST Register
Syntax:	IOST R
Operands:	$\mathrm{R}=5,6$ or 7
Operation:	ACC \rightarrow IOST register R
Status Affected:	None
Description:	IOST register 'R' ($R=5,6$ or 7) is loaded with the contents of the ACC register.
Cycles:	1
MOVAR	Move ACC to R
Syntax:	MOVAR R
Operands:	$0 \leq R \leq 63$
Operation:	$\mathrm{ACC} \rightarrow \mathrm{R}$
Status Affected:	None
Description:	Move data from the ACC register to register 'R'.
Cycles:	1
MOVIA	Move Immediate to ACC
Syntax:	MOVIA I
Operands:	$0 \leq 1 \leq 255$
Operation:	$1 \rightarrow$ ACC
Status Affected:	None
Description:	The 8-bit immediate ' l ' is loaded into the ACC register. The don't cares will assemble as 0s.
Cycles:	1
MOVR	Move R
Syntax:	MOVR R, d
Operands:	$\begin{aligned} & 0 \leq R \leq 63 \\ & d \in[0,1] \end{aligned}$
Operation:	$\mathrm{R} \rightarrow$ dest
Status Affected:	Z
Description:	The contents of register ' R ' is moved to destination ' d '. If ' d ' is 0 , destination is the ACC register. If ' d ' is 1 , the destination is file register ' R '. ' d ' is 1 is useful to test a file register since status flag Z is affected.
Cycles:	1

FEELING TECHNOLOGY

NOP	No Operation
Syntax:	NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Cycles:	1
OPTION	Load OPTION Register
Syntax:	OPTION
Operands:	None
Operation:	ACC \rightarrow OPTION
Status Affected:	None
Description:	The content of the ACC register is loaded into the OPTION register.
Cycles:	1
PAGE	Move Immediate to program page bits
Syntax:	PAGE I
Operands:	$0 \leq I \leq 1$
Operation:	I \rightarrow PCHBUF<2>
Status Affected:	None
Description:	The program page bits are loaded with the 1-bit immediate 'l'.
Cycles:	1
RETFIE	Return from Interrupt, Set 'GIE' Bit

RLR	Rotate Left fthrough Carry
Syntax:	RLR R, d
Operands:	$\begin{aligned} & 0 \leq R \leq 63 \\ & d \in[0,1] \end{aligned}$
Operation:	$\begin{aligned} & \mathrm{R}<7>\rightarrow \mathrm{C} ; \\ & \mathrm{R}<6: 0>\rightarrow \text { dest }<7: 1>; \\ & \mathrm{C} \rightarrow \text { dest }<0> \end{aligned}$
Status Affected:	C
Description:	The contents of register ' R ' are rotated one bit to the left through the Carry Flag. If ' d ' is 0 the result is placed in the ACC register. If ' d ' is 1 the result is stored back in register ' R '.
Cycles:	1
RRR	Rotate Right fthrough Carry
Syntax:	RRR R, d
Operands:	$\begin{aligned} & 0 \leq R \leq 63 \\ & d \in[0,1] \end{aligned}$
Operation:	$\begin{aligned} & C \rightarrow \text { dest }<7>; \\ & \mathrm{R}<7: 1>\rightarrow \text { dest }<6: 0>; \\ & \mathrm{R}<0>\rightarrow \mathrm{C} \end{aligned}$
Status Affected:	C
Description:	The contents of register ' R ' are rotated one bit to the right through the Carry Flag. If ' d ' is 0 the result is placed in the ACC register. If ' d ' is 1 the result is placed back in register ' R '.
Cycles:	1
SLEEP	Enter SLEEP Mode
Syntax:	SLEEP
Operands:	None
Operation:	OOh \rightarrow WDT;
	OOh \rightarrow WDT prescaler;
	$1 \rightarrow \overline{\mathrm{TO}}$;
	$0 \rightarrow$ PD
Status Affected:	TO , PD
Description:	Time-out status bit ($\overline{\mathrm{TO}}$) is set. The power-down status bit (PD) is cleared. The WDT and its prescaler are cleared.
	The processor is put into SLEEP mode.
Cycles:	1
SBCAR	Subtract ACC from R with Carry
Syntax:	SBCAR R, d
Operands:	$0 \leq \mathrm{R} \leq 63$
	$\mathrm{d} \in[\underline{0,1]}$
Operation:	$\mathrm{R}+\overline{\mathrm{ACC}}+\mathrm{C} \rightarrow$ dest
Status Affected:	C, DC, Z
Description:	Add the 2's complement data of the ACC register from register ' R ' with Carry. If ' d ' is 0 the result is stored in the ACC register. If ' d ' is 1 the result is stored back in register ' R '.
Cycles:	1

FEELING

SUBAR	Subtract ACC from R
Syntax:	SUBAR R, d
Operands:	$0 \leq R \leq 63$
	$\mathrm{d} \in[0,1]$
Operation:	$\mathrm{R}-\mathrm{ACC} \rightarrow$ dest
Status Affected:	C, DC, Z
Description:	Subtract (2's complement method) the ACC register from register ' R '. If ' d ' is 0 the result is stored in the ACC register. If ' d ' is 1 the result is stored back in register ' R '.
Cycles:	1
SUBIA	Subtract ACC from Immediate
Syntax:	SUBIA I
Operands:	$0 \leq 1 \leq 255$
Operation:	$1-\mathrm{ACC} \rightarrow$ ACC
Status Affected:	C, DC, Z
Description:	Subtract (2's complement method) the ACC register from the 8-bit immediate ' l '. The result is placed in the ACC register.
Cycles:	1
SWAPR	Swap nibbles in \mathbf{R}
Syntax:	SWAPR R, d
Operands:	$\begin{aligned} & 0 \leq R \leq 63 \\ & d \in[0,1] \end{aligned}$
Operation:	$\mathrm{R}<3: 0>\rightarrow$ dest<7:4>;
	R<7:4> \rightarrow dest<3:0>
Status Affected:	None
Description:	The upper and lower nibbles of register ' R ' are exchanged. If ' d ' is 0 the result is placed in ACC register. If ' d ' is 1 the result in placed in register ' R '.
Cycles:	1
TBL	Table Look-up
Syntax:	TBL
Operands:	None
Operation:	$\mathrm{PC}<7: 0>+\mathrm{ACC} \rightarrow \mathrm{PC}<7: 0>$
	$\mathrm{PC}<9: 8>$ unchanged
	PCHBUF<2> \rightarrow PC<10>
Status Affected:	C, DC, Z
Description:	Operate with RETIA to look-up table
Cycles:	1
XORAR	Exclusive OR ACC with R
Syntax:	XORAR R, d
Operands:	$\begin{aligned} & 0 \leq R \leq 63 \\ & d \in[0,1] \end{aligned}$
Operation:	ACC xor $\mathrm{R} \rightarrow$ dest
Status Affected:	Z
Description:	Exclusive OR the contents of the ACC register with register ' R '. If ' d ' is 0 the result is stored in the ACC register. If ' d ' is 1 the result is stored back in register ' R '.
Cycles:	1

FEELING

XORIA	Exclusive OR Immediate with ACC
Syntax:	XORIA I
Operands:	$0 \leq I \leq 255$
Operation:	ACC xor I \rightarrow ACC
Status Affected:	Z
Description:	The contents of the ACC register are XOR'ed with the 8-bit immediate ' I '. The result is placed
	in the ACC register.
Cycles:	1

4.0 ABSOLUTE MAXIMUM RATINGS

Ambient Operating Temperature
Store Temperature
DC Supply Voltage (Vdd)
Input Voltage with respect to Ground (Vss)

$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
0 V to +6.0 V
-0.3 V to $(\mathrm{Vdd}+0.3) \mathrm{V}$

5.0 OPERATING CONDITIONS

DC Supply Voltage
+2.3 V to +5.5 V
Operating Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

6.0 ELECTRICAL CHARACTERISTICS

6.1 ELECTRICAL CHARACTERISTICS of FM8P55E/57E

Under Operating Conditions, at four clock instruction cycles and WDT \& LVDT are disabled

Sym	Description	Conditions	Min.	Typ.	Max.	Unit
F_{HF}	X'tal oscillation range	HF mode, Vdd=5V	1		20	MHz
		HF mode, Vdd=3V	1		15	
F_{XT}	X'tal oscillation range	XT mode, Vdd=5V	0.5		10	MHz
		XT mode, Vdd=3V	0.5		10	
$\mathrm{F}_{\text {LF }}$	X'tal oscillation range	LF mode, Vdd=5V	32		4000	KHZ
		LF mode, Vdd=3V	32		1000	
$\mathrm{F}_{\text {ERC }}$	RC oscillation range	ERC mode, Vdd=5V	DC		15	MHz
		ERC mode, $\mathrm{Vdd}=3 \mathrm{~V}$	DC		7	
V_{1+}	Input high voltage	I/O ports, Vdd=5V	2.0			V
		RSTB, TOCKI pins, Vdd=5V	4.0			
		I/O ports, Vdd=3V	1.5			
		RSTB, TOCKI pins, Vdd=3V	2.4			
$\mathrm{V}_{\text {IL }}$	Input low voltage	I/O ports, Vdd=5V			1.0	V
		RSTB, TOCKI pins, Vdd=5V			1.0	
		I/O ports, Vdd=3V			0.6	
		RSTB, TOCKI pins, Vdd=3V			0.6	
V_{OH}	Output high voltage	$\mathrm{I}_{\text {OH }}=-5.4 \mathrm{~mA}, \mathrm{Vdd}=5 \mathrm{~V}$	3.6			V
V_{OL}	Output low voltage	$\mathrm{l}_{\mathrm{oL}}=8.7 \mathrm{~mA}, \mathrm{Vdd}=5 \mathrm{~V}$			0.6	V
$\mathrm{l}_{\text {PH }}$	Pull-high current	Input pin at Vss, Vdd=5V		-45		uA
$\mathrm{IPD}^{\text {P }}$	Pull-down current	Input pin at Vdd, Vdd=5V		35		uA
$I_{\text {WDT }}$	WDT current	$\mathrm{Vdd}=5 \mathrm{~V}$		9	12	uA
		$\mathrm{Vdd}=3 \mathrm{~V}$		2	4	
$\mathrm{T}_{\text {WDT }}$	WDT period	$\mathrm{Vdd}=3 \mathrm{~V}$		20.4		mS
		$\mathrm{Vdd}=4 \mathrm{~V}$		17.9		
		$\mathrm{Vdd}=5 \mathrm{~V}$		16.2		
$\mathrm{I}_{\text {LVDT }}$	LVDT current	Vdd $=5 \mathrm{~V}$ LVDT $=3.6 \mathrm{~V}$		3	4	uA
		$\mathrm{Vdd}=5 \mathrm{~V}$ LVDT $=2 \mathrm{~V}$		2	3	
		Vdd=3V LVDT $=2 \mathrm{~V}$		1.5	2.5	
$I_{\text {SB }}$	Power down current	Sleep mode, Vdd=5V, WDT enable		20		uA
		Sleep mode, Vdd=5V, WDT disable		3		
		Sleep mode, Vdd=3V, WDT enable		2.5		
		Sleep mode, Vdd=3V, WDT disable		1.1		
I_{DD}	Operating current	HF mode, Vdd=5V, 4 clock instruction				mA
		20 MHz		2.04		
		15 MHz		1.68		
		10 MHz		1.28		
		4 MHz		0.78		
		2MHz		0.62		

I_{DD}	Operating current	HF mode, Vdd=3V, 4 clock instruction		mA
		20MHz	0.92	
		15 MHz	0.72	
		10MHz	0.54	
		4 MHz	0.30	
		2MHz	0.19	
I_{DD}	Operating current	HF mode, Vdd=5V, 2 clock instruction		mA
		20MHz	2.94	
		15 MHz	2.34	
		10MHz	1.74	
		4 MHz	0.96	
		2MHz	0.68	
IDD	Operating current	HF mode, Vdd=3V, 2 clock instruction		mA
		20MHz	1.38	
		15 MHz	1.07	
		10 MHz	0.77	
		4 MHz	0.38	
		2 MHz	0.24	
I_{DD}	Operating current	XT mode, Vdd=5V, 4 clock instruction		mA
		20 MHz	1.69	
		15 MHz	1.36	
		10 MHz	1.04	
		4 MHz	0.64	
		2MHz	0.49	
I_{DD}	Operating current	XT mode, Vdd=3V, 4 clock instruction		mA
		20 MHz	0.78	
		15 MHz	0.60	
		10 MHz	0.44	
		4 MHz	0.24	
		2MHz	0.17	
IDD	Operating current	XT mode, Vdd=5V, 2 clock instruction		mA
		20 MHz	2.81	
		15 MHz	2.20	
		10 MHz	1.60	
		4 MHz	0.87	
		2MHz	0.61	
$I_{\text {D }}$	Operating current	XT mode, Vdd=3V, 2 clock instruction		mA
		20 MHz	1.36	
		15 MHz	1.05	
		10 MHz	0.73	
		4 MHz	0.36	
		2MHz	0.23	

$\mathrm{I}_{\text {D }}$	Operating current	LF mode, Vdd=5V, 4 clock instruction				uA
		2MHz			290	
		1 MHz			208	
		500 KHz			167	
		100 KHz			118	
		32 KHz			101	
I_{DD}	Operating current	LF mode, Vdd=3V, 4 clock instruction				uA
		2 MHz			105	
		1 MHz			73	
		500 KHz			54	
		100 KHz			33	
		32 KHz			26	
IDD	Operating current	LF mode, Vdd=5V, 2 clock instruction				uA
		2 MHz			371	
		1 MHz			269	
		500 KHz			194	
		100 KHz			130	
		32 KHz			108	
$I_{\text {DD }}$	Operating current	LF mode, Vdd=3V, 2 clock instruction				uA
		2MHz			158	
		1 MHz			100	
		500 KHz			67	
		100 KHz			38	
		32 KHz			29	
$I_{\text {DD }}$	Operating current	ERC mode, Vdd=5V, 4 clock instruction				mA
			$\mathrm{R}=1 \mathrm{Kohm}$	$\mathrm{F}=14.96 \mathrm{MHz}$	4.572	
			$\mathrm{R}=3.3 \mathrm{Kohm}$	$\mathrm{F}=11.06 \mathrm{MHz}$	1.845	
		$\mathrm{C}=3 \mathrm{P}$	$\mathrm{R}=10 \mathrm{Kohm}$	$\mathrm{F}=5.80 \mathrm{MHz}$	0.761	
			$\mathrm{R}=100 \mathrm{Kohm}$	$\mathrm{F}=808 \mathrm{KHz}$	0.170	
			$\mathrm{R}=300 \mathrm{Kohm}$	$\mathrm{F}=276 \mathrm{KHz}$	0.119	
			$\mathrm{R}=1 \mathrm{Kohm}$	$\mathrm{F}=11.7 \mathrm{MHz}$	4.226	
			$\mathrm{R}=3.3 \mathrm{Kohm}$	$\mathrm{F}=6.35 \mathrm{MHz}$	1.519	
		C=20P	$\mathrm{R}=10 \mathrm{Kohm}$	$\mathrm{F}=2.73 \mathrm{MHz}$	0.613	
			$\mathrm{R}=100 \mathrm{Kohm}$	$\mathrm{F}=320 \mathrm{KHz}$	0.147	
			$\mathrm{R}=300 \mathrm{Kohm}$	$\mathrm{F}=108 \mathrm{KHz}$	0.109	
			$\mathrm{R}=1 \mathrm{Kohm}$	$\mathrm{F}=5.23 \mathrm{MHz}$	3.429	
			$\mathrm{R}=3.3 \mathrm{Kohm}$	$\mathrm{F}=2.05 \mathrm{MHz}$	1.163	
		$\mathrm{C}=100 \mathrm{P}$	$\mathrm{R}=10 \mathrm{Kohm}$	$\mathrm{F}=748 \mathrm{KHz}$	0.454	
			$\mathrm{R}=100 \mathrm{Kohm}$	$\mathrm{F}=80 \mathrm{KHz}$	0.126	
			$\mathrm{R}=300 \mathrm{Kohm}$	$\mathrm{F}=26.4 \mathrm{KHz}$	0.100	
		C=300P	$\mathrm{R}=1 \mathrm{Kohm}$	$\mathrm{F}=2.5 \mathrm{MHz}$	3.024	

FEELING TECHNOLOGY

I_{DD}	Operating current	ERC mode, Vdd=3V, 2 clock instruction				mA
		$\mathrm{C}=3 \mathrm{P}$	$\mathrm{R}=1 \mathrm{Kohm}$	$\mathrm{F}=8.306 \mathrm{MHz}$	2.552	
			R=3.3Kohm	$\mathrm{F}=7.29 \mathrm{MHz}$	1.130	
			$\mathrm{R}=10 \mathrm{Kohm}$	$\mathrm{F}=4.81 \mathrm{MHz}$	0.518	
			$\mathrm{R}=100 \mathrm{Kohm}$	$\mathrm{F}=904 \mathrm{KHz}$	0.084	
			$\mathrm{R}=300 \mathrm{Kohm}$	$\mathrm{F}=338 \mathrm{KHz}$	0.039	
		$\mathrm{C}=20 \mathrm{P}$	$\mathrm{R}=1 \mathrm{Kohm}$	$\mathrm{F}=7.08 \mathrm{MHz}$	2.445	
			$\mathrm{R}=3.3 \mathrm{Kohm}$	$\mathrm{F}=5.07 \mathrm{MHz}$	0.986	
			$\mathrm{R}=10 \mathrm{Kohm}$	$\mathrm{F}=2.68 \mathrm{MHz}$	0.393	
			$\mathrm{R}=100 \mathrm{Kohm}$	$\mathrm{F}=362 \mathrm{KHz}$	0.061	
			$\mathrm{R}=300 \mathrm{Kohm}$	$\mathrm{F}=123 \mathrm{KHz}$	0.031	
		$\mathrm{C}=100 \mathrm{P}$	$\mathrm{R}=1 \mathrm{Kohm}$	$\mathrm{F}=4.11 \mathrm{MHz}$	2.197	
			R=3.3Kohm	$\mathrm{F}=2.03 \mathrm{MHz}$	0.745	
			$\mathrm{R}=10 \mathrm{Kohm}$	$\mathrm{F}=810 \mathrm{KHz}$	0.270	
			R=100Kohm	$\mathrm{F}=91 \mathrm{KHz}$	0.043	
			R=300Kohm	$\mathrm{F}=30 \mathrm{KHz}$	0.025	
		$\mathrm{C}=300 \mathrm{P}$	$\mathrm{R}=1 \mathrm{Kohm}$	$\mathrm{F}=2.37 \mathrm{MHz}$	1.953	
			$\mathrm{R}=3.3 \mathrm{Kohm}$	$\mathrm{F}=964 \mathrm{KHz}$	0.648	
			$\mathrm{R}=10 \mathrm{Kohm}$	$\mathrm{F}=354 \mathrm{KHz}$	0.231	
			$\mathrm{R}=100 \mathrm{Kohm}$	$\mathrm{F}=38 \mathrm{KHz}$	0.038	
			$\mathrm{R}=300 \mathrm{Kohm}$	$\mathrm{F}=13 \mathrm{KHz}$	0.022	

6.2 ELECTRICAL CHARACTERISTICS of FM8P55/57

To be defined

PACKAGE DIMENSION

7.1 28-PIN PDIP 600mil

Symbols	Dimension In Millimeters			Dimension In Inches		
	Min	Nom	Max	Min	Nom	Max
A	-	-	5.59	-	-	0.220
A1	0.38	-	-	0.015	-	-
A2	3.81	3.94	4.06	0.150	0.155	0.160
B	-	1.52	-	-	0.06	-
B1	-	0.46	-	-	0.018	-
D	36.96	37.08	37.34	1.455	1.460	1.470
E	-	15.24	-	-	0.600	-
E1	13.72	13.84	13.97	0.540	0.545	0.550
e	-	2.54	-	-	0.100	-
L	3.18	-	-	0.125	-	-
eB	16.00	16.51	17.02	0.630	0.650	0.670

7.2 28-PIN Skinny PDIP 300mil

Symbols	Dimension In Millimeters			Dimension In Inches		
	Min	Nom	Max	Min	Nom	Max
A	-	-	4.57	-	-	0.180
A1	0.38	-	-	0.015	-	-
A2	-	3.30	3.56	-	0.130	0.140
B	1.02	-	1.65	0.0040	-	0.065
B1	0.41	-	0.58	0.016	-	0.023
B2	0.71	-	1.12	0.028	-	0.044
C	0.20	0.25	0.33	0.008	0.010	0.013
D	35.13	35.18	35.43	1.383	1.385	1.395
E	7.87	8.31	8.38	0.310	0.327	0.330
E1	7.26	7.32	7.52	0.284	0.288	0.296
e	-	2.54	-	-	0.100	-
L	3.18	-	-	0.125	-	-
EB	8.64	-	9.65	0.340	-	0.380

7.3 28-PIN SOP 300mil

Symbols	Dimension In Millimeters			Dimension In Inches		
	Min	Nom	Max	Min	Nom	Max
A	-	2.488	2.743	-	0.098	0.108
A1	0.152	-	-	0.006	-	-
A2	2.21	2.336	2.464	0.087	0.091	0.097
B	0.305	0.406	0.508	0.012	0.016	0.020
C	0.204	0.254	0.304	0.008	0.010	0.012
D	17.78	17.91	18.42	0.700	0.705	0.725
E	7.366	7.493	7.62	0.290	0.295	0.300
e	1.219	1.270	1.321	0.048	0.050	0.052
eB	10.26	10.42	10.57	0.404	0.410	0.416
L	0.635	-	-	0.025	-	-
θ	0°	4°	8°	0°	4°	8°
D1	0.356	0.508	-	0.014	0.020	-

7.4 28-PIN SSOP 209mil

Sy	Dimension In Millimeters		
	Min	Nom	Max
A	-	-	2.00
A1	0.05	-	-
A2	1.62	1.75	1.85
b	0.22	-	0.38
C	0.09	-	0.25
D	9.90	10.20	10.50
E	7.40	7.80	8.20
E1	5.00	5.30	5.60
e	0.65 BSC	10.42	10.57
L	0.55	0.75	0.95
R	0.09	-	-
θ°	0°	4°	8°

7.0 ORDERING INFORMATION

OTP Type MCU	Package Type	Pin Count	Package Size
FM8P55EP	PDIP	28	600 mil
FM8P55EM	Skinny PDIP	28	300 mil
FM8P55ED	SOP	28	300 mil
FM8P55ER	SSOP	28	209 mil
FM8P57EP	PDIP	28	600 mil
FM8P57EM	Skinny PDIP	28	300 mil
FM8P57ED	SOP	28	300 mil
FM8P57ER	SSOP	28	209 mil

Mask Type MCU	Package Type	Pin Count	Package Size
FM8P55P	PDIP	28	600 mil
FM8P55M	Skinny PDIP	28	300 mil
FM8P55D	SOP	28	300 mil
FM8P55R	SSOP	28	209 mil
FM8P57P	PDIP	28	600 mil
FM8P57M	Skinny PDIP	28	300 mil
FM8P57D	SOP	28	300 mil
FM8P57R	SSOP	28	209 mil

