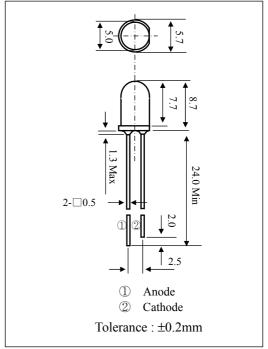
OPE5685

The **OPE5685** is GaAlAs infrared emitting diode that is designed for high power, low forward voltage and high speed rise / fall time.

This device is optimized for speed and efficiency at emission wavelength 850nm and has a high radiant efficiency over a wide range of forward current. This device is packaged T1-3/4 plastic package and has wide beam angle with lensed package and cup frame. Especially this device is suited as the emitter of data transmission without cable.

FEATURES

- High speed: 25ns rise time
- 850nm wavelength
- Wide beam angle
- Low forward voltage
- High power and high reliability
- Available for pulse operating


APPLICATIONS

- Emitter of IrDA
- IR Audio and Telephone
- High speed IR communication
- IR LANs
- Available for wireless digital data transmission

STORAGE

- Condition: 5°C~35°C,R.H.60%
- Terms: within 3 months from production date
- Remark : Once the package is opened, the products should be used within a day. Otherwise, it should be keeping in a damp proof box with desiccants.
- * Please take proper steps in order to secure reliability and safety in required conditions and environments for this device.

DIMENSIONS (Unit: mm)

MAXIMUM RATINGS

Soldering temp.

(Ta=25°C) Item Symbol Rating Unit 150 Power Dissipation MW $P_{\rm D}$ Forward current $I_{\rm F}$ 100 MA Pulse forward current $I_{FP} \\$ 1.0 A V_R V Reverse voltage 4.0 -25~ +85 Operating temp. Topr. °C

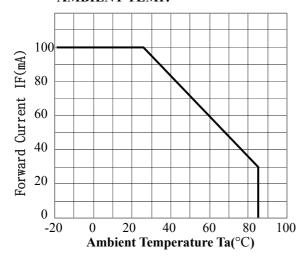
Tsol.

ELECTRO-OPTICAL CHARACTERISTICS

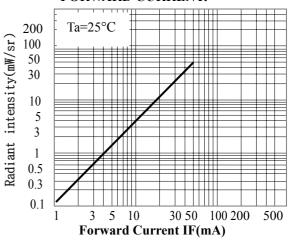
 $(Ta=25^{\circ}C)$

ELECTRO-OFFICAL CHARACTERISTICS			(1a-23 C)			
Item	Symbol	Conditions	Min.	Typ.	Max.	Unit
Forward voltage	V_{F}	I _F =50mA		1.5	2.0	V
Reverse current	I_R	V _R =4V			10	μA
Capacitance	Ct	f=1MHz		20		pF
Radiant intensity	Ie	I _F =50mA		50		mW/sr
Peak emission wavelength	λр	I _F =50mA		850		nm
Spectral bandwidth 50%	Δλ	I _F =50mA		45		nm
Half angle	Δθ	I _F =50mA		±22		deg.
Optical rise & fall time(10%~90%)	tr/tf	I _F =50mA		25/13		ns
Cut off frequency *3	fc	I _F =50mA DC +10mA p-p		14		MHz

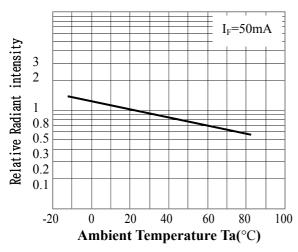
260.

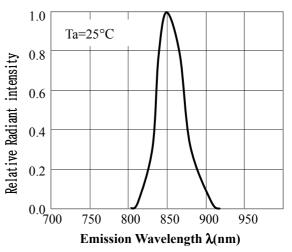

°C

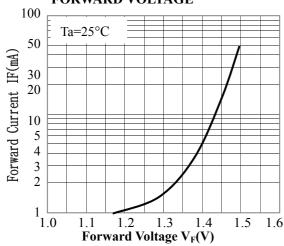
Duty ratio = 1/100, pulse width=0.1ms.

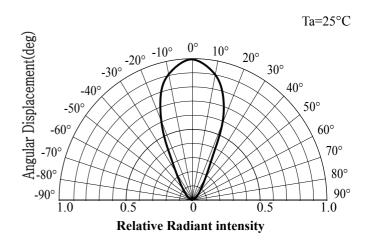

^{*2.}Lead Soldering Temperature (2mm from case for 5sec.).

 $^{^{*3}}$. $10\log Po(fc MHz)/Po(0.1 MHz)=-3$


• FORWARD CURRENT Vs. AMBIENT TEMP.


• RADIANT INTENSITY Vs. FORWARD CURRENT.


• RELATIVE RADIANT INTENSITY Vs. AMBIENT TEMP.


• RELATIVE RADIANT INTENSITY Vs. EMISSION WAVELENGTH.

• FORWARD CURRENT Vs. FORWARD VOLTAGE

• ANGULAR DISPLACEMENT VS RELATIVE RADIANT INTENSITY

