1.2A, 30V Step Down DC/DC converter

OUTLINE

The R1244N001B is CMOS-based Step-down DC/DC converter with an internal N-channel high side Tr . ($R_{\text {Dson }}$ Typ. 0.35Ω) power switch. The R1244N001B can provide the maximum 1.2A output current. The IC consists of an oscillator, a PWM control circuit, a reference voltage unit, an error amplifier, phase compensation circuits, a slope compensation circuit, a soft-start circuit, protection circuits, an internal voltage regulator, and a switch for a bootstrap circuit. To make a step-down DC/DC converter with the R1244NO01B, as external components, an inductor, resistors, a diode, and capacitors are necessary.

The R1244N001B is a current mode PWM step-down DC/DC converter, but the external current sense resistor is not necessary. Fast transient response and high efficiency characteristics are realized with the R1244N001B. The R 1244 N 001 B allows the use of ceramic capacitors. The oscillator frequency is internally fixed at 1.25 MHz .

Cycle by cycle current limit provides protection against over-current. Fold back circuit reduces frequency into $1 / 4$ against shorted output and realizes limiting the Lx current. Thermal shutdown function and UVLO are also built-in.

FEATURES

- Operating Voltage
4.5V~30V
- Internal Nch MOSFET Driver
Typ.Ron=0.35
- Adjustable output voltage with external resistor $\cdots \cdots \cdot 0.8 \mathrm{~V} \sim 15 \mathrm{~V}$
- Feed back voltage .. $0.8 \mathrm{~V} \pm 1.5 \%$
- Peak Current limit function Typ. 2.0A
- UVLO function

- Short protection for output .. Fold Back
- Ceramic Capacitor compatible
- Stand-by function .. Typ. $0 \mu \mathrm{~A}$
- Package .. SOT-23-6W

APPLICATIONS

- Power source for digital home appliance
- Power source for hand-held communication equipment, cameras, video instruments such as VCRs, camcorders.
- Power source for battery-powered equipment.
- Battery Charger

R1244N001B

BLOCK DIAGRAMS

SELECTION GUIDE

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R1244N001B-TR-FE	SOT-23-6W	$3,000 \mathrm{pcs}$	Yes	Yes

PIN CONFIGURATION

- SOT-23-6W

Top View

PIN DESCRIPTION

- R1244N001B

Pin No.	Symbol	Description
1	BST	Bootstrap Pin
2	GND	Ground Pin
3	VFB	Feedback Pin
4	CE	Chip Enable Pin (Active with "H")
5	VIN $^{\text {IN }}$	Power Supply Pin
6	Lx	Lx Switching Pin

ABSOLUTE MAXMUM RATINGS

Symbol	Item	Rating		Unit
Vin	Input Voltage	-0.3 to 32		V
VBSt	BST Pin Voltage			V
VLx	Lx Pin Voltage	-0.3 to $\mathrm{VIN}^{+}+0.3$		V
ILx	Lx Pin Current	2		A
$V_{\text {ce }}$	CE Pin input Voltage	-0.3 to $\mathrm{VIN}_{\text {IN }}+0.3$		V
$V_{\text {FB }}$	$V_{\text {fb }}$ Pin Voltage	-0.3 to 4		V
PD	Power Dissipation(SOT-23-6W)	Standard Land Pattern	430*	mW
Ta	Operating Temperature Range	-40 to 85		${ }^{\circ} \mathrm{C}$
Tstg	Storage Temperature Range	-55 to 125		${ }^{\circ} \mathrm{C}$

*) For Power Dissipation, please refer to PACKAGE INFORMATION.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field.
The functional operation at or over these absolute maximum ratings is not assured.

ELECTRICAL CHARACTERISTICS

(Otherwise notified in Conditions, $\mathrm{Vin}=12 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

Symbol	Item	Conditions	MIN.	TYP.	MAX.	Unit
VIN	Operating Input Voltage		4.5		30	V
In	VIn Consumption Current	$\mathrm{V}_{\text {IN }}=30 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=1.0 \mathrm{~V}$		0.5	1.0	mA
Vuvlo1	UVLO Detector Voltage	Falling		$\begin{gathered} \hline \mathrm{V}_{\text {UVLO2 }} \\ -0.2 \end{gathered}$		V
Vuvloz	UVLO Released Voltage	Rising	3.7	4.0	4.2	V
$\mathrm{V}_{\text {Fb }}$	FB Voltage Tolerance		0.788	0.800	0.812	V
$\Delta \mathrm{V}_{\mathrm{FB}} / \Delta \mathrm{T}$	V ${ }_{\text {FB }}$ Voltage Temperature Coefficient	$-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 85^{\circ} \mathrm{C}$		± 150		ppm $/{ }^{\circ} \mathrm{C}$
fosc	Oscillator Frequency		1000	1250	1500	kHz
ffLB	Fold back Frequency	$\mathrm{V}_{\mathrm{FB}}<0.56 \mathrm{~V}$		310		kHz
Maxduty	Oscillator Maximum. Duty Cycle			85		\%
$\mathrm{t}_{\text {min }}$	Minimum On Time			100		ns
tstart	Soft-start Time	$\mathrm{V}_{\mathrm{FB}}=0.72 \mathrm{~V}$	0.2	0.4	0.6	ms
RLXH	Lx High Side Switch ON Resistance			0.35		Ω
ILXhoff	Lx High Side Switch Leakage Current			0	5	$\mu \mathrm{A}$
IlimLxh	Lx High Side Switch Limited Current			2.0		A
$\mathrm{V}_{\text {ceh }}$	CE "H" Input Voltage		1.6			V
$\mathrm{V}_{\text {cel }}$	CE "L" Input Voltage				0.3	V
$\mathrm{I}_{\text {fb }}$	$V_{\text {FB }}$ Input Current		-1.0		1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {cee }}$	CE "H" Input Current		-1.0		1.0	$\mu \mathrm{A}$
Icel	CE "L" Input Current		-1.0		1.0	$\mu \mathrm{A}$
T TSD	Thermal Shutdown Detect Temperature	Hysteresis $30^{\circ} \mathrm{C}$		160		${ }^{\circ} \mathrm{C}$
Istandby	Standby Current	$\mathrm{V}_{1 \mathrm{~N}}=30 \mathrm{~V}$		0	5	$\mu \mathrm{A}$

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

TYPICAL APLICATION

(External Parts)

$\mathrm{C}_{\text {In }}$	$10 \mu \mathrm{~F}$	KTS500B106M55N0T00 (Nippon Chemi-Con)
Cout	$10 \mu \mathrm{~F}$	GRM31CR71E106K (Murata)
$\mathrm{C}_{\text {bst }}$	$0.1 \mu \mathrm{~F}$	GRM21BB11H104KA01L (Murata)
L	$4.7 \mu \mathrm{H}$	SLF7045T-4R7M2R0-PF (TDK)
D	MA24D60 (Panasonic)	

- Technical Notes on External Components

External components must be connected as close as possible to the Ics and make wiring as short as possible. Especially, the capacitor connected in between VIN and GND pin must be placed close to the IC.
If the impedance of power line and ground line is high, the internal voltage level may shift by the switching current and unstable operation may result. Make the power line and GND line sufficient. Step down regulator draws large current from the power supply and large switching current flows through the GND line, the inductor, Lx line, Vout line, therefore precaution for layout is necessary. Besides, the wiring between the divider resistor(R1) for setting output voltage and the inductor, and the wiring between the load and the inductor must be separated.

Ceramic capacitors have very low equivalent series resistance(ESR) and provide the best performance for the R1244N001B. Good values of C_{IN} capacitor between V_{IN} and GND is equal or more than $10 \mu \mathrm{~F}$, and good values of Cout capacitor is equal or more than $10 \mu \mathrm{~F}$ if the output voltage, Vout $\geq 1.8 \mathrm{~V}$. If the output voltage, Vout $<1.8 \mathrm{~V}$, equal or more than $20 \mu \mathrm{~F}$ is recommended. Keep in mind that depending on the ceramic capacitor, the voltage bias characteristics and the temperature characteristics are different.

Select the inductor value in the range between $4.7 \mu \mathrm{H}$ and $10 \mu \mathrm{H}$ if the output voltage, $\mathrm{Vout} \geq 5 \mathrm{~V}, 4.7 \mu \mathrm{H}$ if the output voltage is $5 \mathrm{~V}>\mathrm{V}$ out $\geq 1.8 \mathrm{~V}$, and $2.2 \mu \mathrm{H}$ if the output voltage $\mathrm{Vout}<1.8 \mathrm{~V}$. Phase compensation of this IC has been made according to the combination of these inductance values and Cout ceramic capacitor values. If the inductance value is smaller than the recommendation value, the over-current protection circuit may work by increasing the peak switching current at large load current.

Over-current protection circuit is influenced by self-heating of the IC by the operation and the condition of the heat radiation.

A Schottky diode is recommended for the catch diode. Choose the diode with small terminal capacitance, Ct. If Ct is too large, during the on time of switching, large switching current flows, and unstable operation may result.

Output voltage can be set according to the equation $V_{\text {out }}=\mathrm{V}_{\mathrm{FB}} \times(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2$. If the values of R 1 and R 2 are large, the impedance of $\mathrm{V}_{\text {Fb }}$ pin increases, and pickup noise may result. The recommendation value range of R 2 is approximately between $1.2 \mathrm{k} \Omega$ and $16 \mathrm{k} \Omega$. If the operation may be unstable, reduce the impedance of $\mathrm{V}_{\text {fв }}$ pin.

Recommended value for each output voltage

| $\operatorname{Vout}(\mathrm{V})$ | 0.8 | 1 | 1.2 | 1.3 | 1.5 | $1.8 \sim 6$ | $6 \sim 15$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{R} 1(\mathrm{k} \Omega)$ | 0 | $=(\mathrm{Vout} / 0.8-1) \times 1.2$ | | | | | |
| $\mathrm{R} 2(\mathrm{k} \Omega)$ | open | 1.20 | 1.20 | 1.20 | 1.20 | 1.20 | 1.20 |
| $\mathrm{Cspd}(\mathrm{pF})$ | open | 3300 | 2200 | 1500 | 470 | 470 | 330 |
| $\operatorname{Cout}(\mu \mathrm{~F})$ | 22×2 | 10×2 | 10×2 | 10×2 | 10×2 | 10 | 10 |
| $\mathrm{~L}(\mu \mathrm{H})$ | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 | 4.7 | $10.0(4.7)$ |

Recommended external Compornents

Symbol	Condition	Value	Parts Name	MFR
Cin		$\begin{aligned} & 10 \mu \mathrm{~F} / 50 \mathrm{~V} \\ & 10 \mu \mathrm{~F} / 50 \mathrm{~V} \end{aligned}$	UMK325BJ106MM-T KTS500B106M55N0T00	TAIYO YUDEN Nippon Chemi-Con
Cout	Vout >10V $\begin{aligned} & 10 \mathrm{~V}>\text { Vout }>1.8 \mathrm{~V} \\ & \text { Vout }<1.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 10 \mu \mathrm{~F} / 50 \mathrm{~V} \\ & 10 \mu \mathrm{~F} / 50 \mathrm{~V} \\ & 10 \mu \mathrm{~F} / 25 \mathrm{~V} \\ & 22 \mu \mathrm{~F} / 10 \mathrm{~V} \end{aligned}$	UMK325BJ106MM-T KTS500B106M55NOT00 GRM31CR71E106K GRM31CR71A226M NOTE: The value of Cout depends upon the setting output voltage.	TAIYO YUDEN Nippon Chemi-Con muRata muRata
Cbst		$0.1 \mu \mathrm{~F} / 50 \mathrm{~V}$	GRM21BB11H104KA01L	muRata
Rbst		47Ω		
L	40V/2.0A	$\begin{aligned} & 10 \mu \mathrm{H} \\ & 4.7 \mu \mathrm{H} \\ & 2.2 \mu \mathrm{H} \end{aligned}$	SLF6045T-100M1R6-3PF SLF7045T-4R7M2R0-PF VLCF4020T-2R2N1R7	$\begin{array}{\|l} \hline \text { TDK } \\ \text { TDK } \\ \text { TDK } \\ \hline \end{array}$
D	$\begin{aligned} & 30 \mathrm{~V} / 2.0 \mathrm{~A} \\ & 40 \mathrm{~V} / 2.0 \mathrm{~A} \\ & 30 \mathrm{~V} / 1.5 \mathrm{~A} \\ & 40 \mathrm{~V} / 2.0 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.32 \mathrm{~V} \\ & 0.49 \mathrm{~V} \\ & 0.42 \mathrm{~V} \\ & 0.43 \mathrm{~V} \end{aligned}$	CMS06 CMS11 MA22D28 MA24D60 NOTE: Diode depends upon the input voltage and output Current.	TOSHIBA TOSHIBA Panasonic Panasonic
Rce	In the IC, ESD protection diode is connected between CE pin and Vin pin. If there is a possibility that the CE pin voltage becomes higher than the Vin pin voltage, it is recommended to insert a $4.7 \mathrm{k} \Omega$ resistance or more in order to prevent the large current flowing from CE pin into Vin pin.			

*The performance of power circuit using those Ics extremely depends upon the peripheral circuits. Pay attention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that the values such as voltage, current, and power of each component, PCB patterns and the IC do not exceed their respected rated values. (such as the voltage, current and power)

Operation of Step Converter and The Output Current

The DC/DC converter charges energy in the inductor when switch is ON, and discharges the energy from the inductor when switch is OFF and controls with less energy loss, so that a lower output voltage than the input voltage is obtained. The operation will be explained with reference to the following diagrams:

Step 1: Switch turns on and current IL (=I1) flows, and energy is charged into Cout. At this moment, IL increases from Ilmin $(=0)$ to reach Ilmax in proportion to the on-time period (ton) of Switch.
Step 2: When Switch turns off, Synchronous rectifier Diode turns on in order that L maintains IL at Ilmax, and current IL (=I2) flows.
Step 3: IL (=I2) decreases gradually and reaches IL=IImin=0 after a time period of topen, and Diode turns off. Provided that in the continuous mode, next cycle starts before IL becomes to 0 because toff time is not enough. In this case, IL value increases from this IImin (>0).

In the case of PWM control system, the output voltage is maintained by controlling the on-time period (ton), with the oscillator frequency (fosc) being maintained constant.

Output Current and Selection of External Components

The relation between the output current and external components is as follows:
When Switch of $L x$ is $O N$:
(Wherein, Ripple Current P-P value is described as IRP, ON resistance of Switch and Diode of Lx are respectively described as $R_{\text {олн }}$ and V_{F} and the $D C$ resistor of the inductor is described as R_{L}.)

$$
\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUt }}+\left(\mathrm{RoNH}^{+R \mathrm{~L}) \times \text { lout }+\mathrm{L} \times \mathrm{I}_{\text {RP }} / \text { ton }}\right.
$$

Equation 1

When Switch is "OFF"(Diode is "ON") as toff:
\qquad
$\mathrm{L} \times \mathrm{l}_{\mathrm{RP}} /$ toff $=\mathrm{V}_{\mathrm{F}}+\mathrm{V}_{\text {out }}+\mathrm{RL} \times$ lout
Equation 2

Put Equation 2 to Equation 1 and solve for ON duty of Switch, ton $/($ toff + ton $)=$ Dos,

$$
\begin{aligned}
& \mathrm{Don}_{\text {on }}=\left(\mathrm{V}_{\text {OUt }}+\mathrm{V}_{\mathrm{F}}+\mathrm{R}_{\mathrm{L}} \times \text { lout }\right) /\left(\mathrm{V}_{\text {IN }}+\mathrm{V}_{\mathrm{F}}-\mathrm{RONH} \times \text { lout }\right) \\
& \text { Equation } 3
\end{aligned}
$$

Ripple Current is as follows:

$$
I_{\text {RP }}=\left(\text { VIN }^{2}-\text { VOUt }- \text { RoNH } \times \text { lout }-R_{L} \times \text { lout }\right) \times \text { Don } / \text { fosc } / L .
$$

Equation 4

Wherein, peak current that flows through L, and Switch is as follows:

IImax $=$ lout $+I_{R P} / 2$
Equation 5

Consider IImax, condition of input and output and select external components.
*The above explanation is directed to the calculation in an ideal case in continuous mode.

TYPICAL CHARACTERISTICS

1) Output Voltage VS. Output Current

R1244N001B

2) Output Voltage VS. Input Voltage R1244N001B

3) Efficiency VS. output Current

R1244N001B

R1244N001B

R1244N001B

R1244N001B

4) FB Voltage VS. Temperature R1244N001B

6) Maxduty VS. Temperature R1244N001B

5) Oscillator Frequency VS. Temperature R1244N001B

7) Fold-Back Frequency VS. Temperature R1244N001B

1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, firecontainment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
7. Anti-radiation design is not implemented in the products described in this document.
8. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

RICOH COMPANY., LTD. Electronic Devices Company

