C2000 MD16

16 路输入智能数字量采集器

用户手册

目录

1. 装箱清单	1
2. 概述	1
3. 技术参数	1
4. 外观引脚说明	2
4.1 产品外观	2
4.2 指示灯	2
4.3 引脚说明	2
5. 外观尺寸	3
5.1 前视图	3
5.2 项视图	3
5.3 后视图	3
5.4 侧视图	4
6. 快速安装	4
6.1 单体安装	4
6.2 并列安装	5
6.3 堆叠安装	5
7. 软件操作	6
7.1 设置	6
7.2 查询状态	7
8. 通信协议	8
8.1 功能码	8
8.2 寄存器列表	
8.3 错误代码表	10
9. 产品保修卡	11

1.装箱清单

MD16

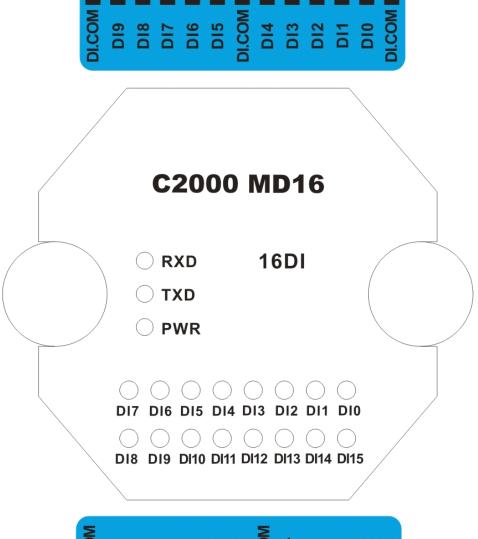
序号	名称	数量	单位	备注
1	主设备 MD16	1	台	
2	用户手册(含保修卡)	1	本	
3	合格证	1	张	

2.概述

MD16 是一款 16 路数字量采集(DI)设备。本产品是通过 RS485 串口进行数据的传输。 采用标准的 Modbus RTU 采集 DI。所有的数据传输均采用标准形式,可扩展性能强,使用方便。所有的 RS485 串口均采用光电隔离和防雷保护,保证设备安全可靠运行。本产品还可以很方便地级联到 M244,M281,M2A8 等具有联网功能的 IO 设备上。电源接口具有防反接和过流过压保护等功能,安全可靠。

3.技术参数

3.1 串口通讯参数


接口协议	RS-485
波特率	9600
数据位	8
奇偶校验	None
停止位	1
流量控制	None

3.2 特性参数

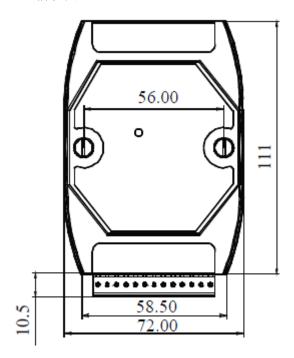
产品型号	MD16
IO路数	16DI
DI	干接点
串口隔离	1.5KV, 600W
电源参数	9-24VDC 300mA
功耗	约 3.6W
工作温度、湿度	-25~85℃, 5~95%RH
储存温度、湿度	-60~125℃, 5~95%RH

4.外观及引脚说明

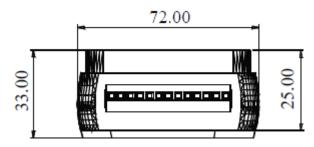
4.1 产品外观

DI.CON DI11 DI11 DI12 DI13 DI14 DI15 DICON 485+ 485REGND VS+

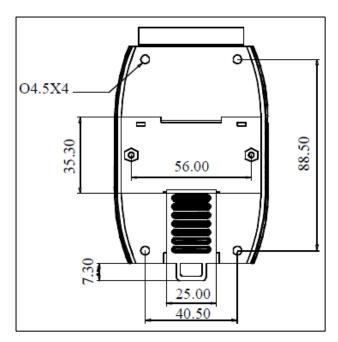
4.2 指示灯

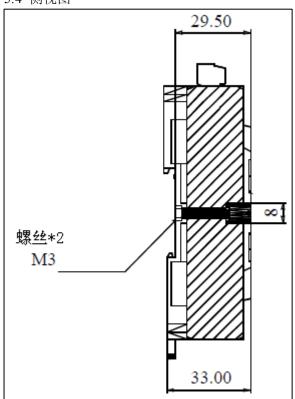

PWR	电源指示灯
RXD	信号接收指示灯
TXD	信号发送指示灯

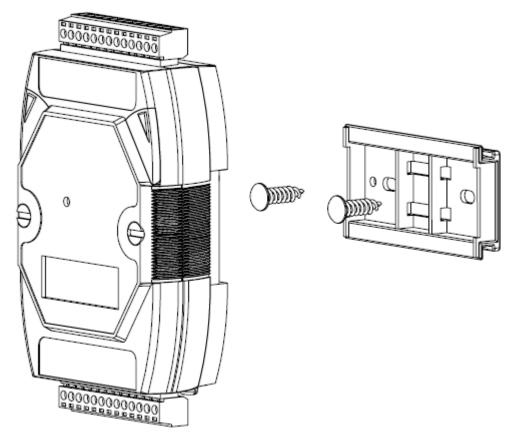
4.3 引脚说明

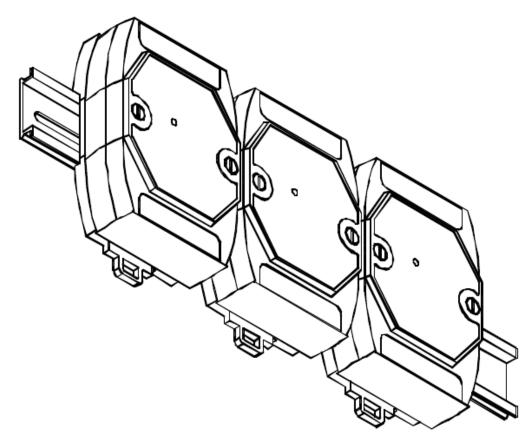

V _S +	电源正
GND	电源负
PE	485 地
485+	RS485+
485-	RS485-
DI.COM	数字量信号输入公共端
DI0~16	数字量信号输入端

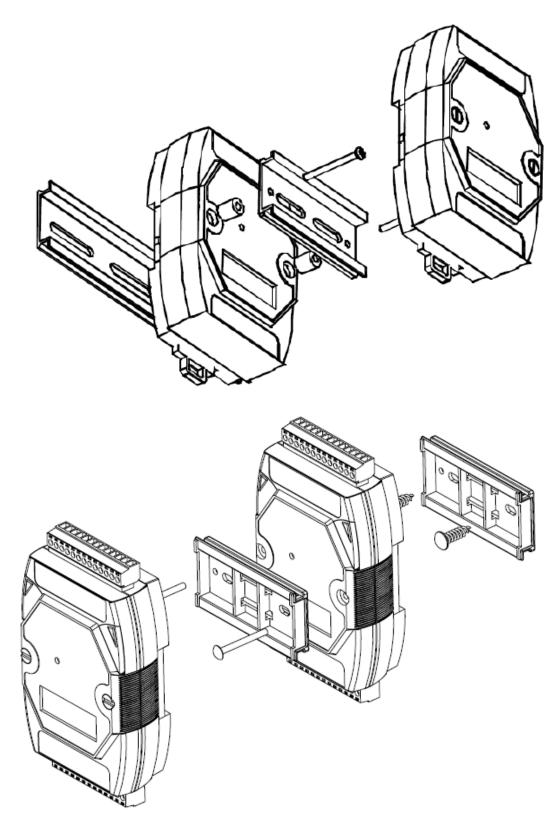
5. 外观尺寸


5.1 前视图


5.2 顶视图


5.3 后视图


5.4 侧视图


- 5.快速安装
- 6.1 单体安装

6.2 并列安装

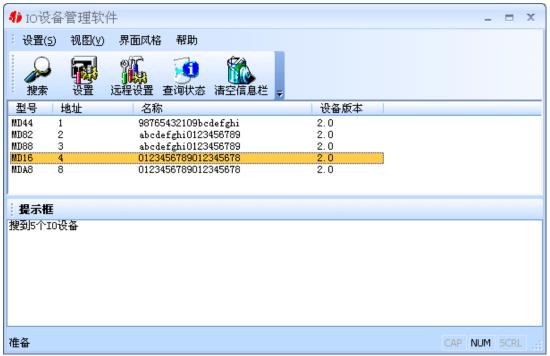
6.3 堆叠安装

6.软件操作

在进行软件操作设置之前需要安装《IO设备管理软件》程序。双击解压后的安装程序,在向导的指引下就可以对程序进行安装。安装完成后会在开始菜单创建一个快捷方式,链接到安装目录中的相应的可执行程序。

*注意 本软件仅用于对产品进行测试,不用作其它用途。

*注意 在使用软件对IO设备进行操作时,请保证设备正常加电并连接好通讯线缆。7.1 设置

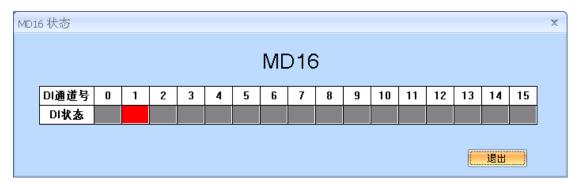

打开IO设备管理软件,软件会询问是使用串口方式还是网络方式进行设备,如下图:

选择选择使用串口进行搜索,点击确定,弹出的提示框中选择我们连接IO设备的串口,并填入搜索的地址范围,在设置搜索范围时请根据实际情况进行设置,避免设置没有必要的大范围导致过长的时间占用。如下图:

设置好搜索参数后,点击确定,开始搜索,会找到连接在我们串口的相应IO设备。如下图:

选中我们所找到的设备MD16,点击设置按钮(或双击我们所找到的设备),来对它进行设置,在打开的设置界面中,可以设置设备使用的485地址和名称等。485地址的合法范围是1~255,名称的可以是中文、英文、数字和下划线等,长度为二十个字节。设置完成点击确定。如下图:

设置完成后如需对设备的状态进行查询,需要重新进行搜索。


*注意:每一次点击确定,设备都会有一个短暂的重新启动的过程。

7.1.2 查询状态

选中我们所搜索到的IO设备,点击查询状态按钮,可以很直观地看到它各路的状态。 DI状态为只读值,红色表示接通,灰色表示断开。

*注意:查询状态具有对IO数值类型为读写值的各路具有设置的作用,在改变了设置的前提下点击确定和取消将产生不同的结果。

如下图:

7. 通信协议

8.1 功能码

功能码 0x03: 读从设备寄存器数据

主站报文:

起始结构	4字节长度的总线空闲时间
从设备地址	1字节,内容为0-0xff
功能码	1字节,内容为0x03
起始寄存器地址	2字节,高字节在前
寄存器个数	2字节,高字节在前
CRC 校验码	2 字节, 低字节在前
结束结构	4字节长度的总线空闲时间

从站应答报文:

操作正常时

	探厅正山山
起始结构	4字节长度的总线空闲时间
从设备地址	1字节,内容为0-0xff
功能码	1字节,内容为0x03
数据长度	1字节,内容为寄存器个数×2
数据	寄存器个数×2字节,每个数据高字节在前
CRC 校验码	2 字节,低字节在前
结束结构	4字节长度的总线空闲时间

操作异常时

起始结构	4字节长度的总线空闲时间
从设备地址	1字节,内容为0-0xff
功能码	1字节,内容为0x83
数据长度	2字节,内容为2,高字节在前
数据	错误代码,见表2
CRC 校验码	2 字节, 低字节在前
结束结构	4字节长度的总线空闲时间

功能码 0x10: 写从设备寄存器数据

主站报文:

起始结构	4字节长度的总线空闲时间
从设备地址	1字节,内容为0-0xff
功能码	1字节,内容为0x10 或0x06
起始寄存器地址	2字节,高字节在前
寄存器个数	2字节,高字节在前
数据长度	1字节,内容为寄存器个数×2
数据	寄存器个数×2字节,每个数据高字节在前
CRC 校验码	2 字节, 低字节在前
结束结构	4字节长度的总线空闲时间

从站应答报文:

操作正常时

起始结构	4字节长度的总线空闲时间
从设备地址	1字节,内容为0-0xff
功能码	1字节,内容为0x10或0x06
起始寄存器地址	2字节,高字节在前
寄存器个数	2字节,高字节在前
CRC 校验码	2 字节, 低字节在前
结束结构	4字节长度的总线空闲时间

操作异常时

\$10 T T T T T T T T T T T T T T T T T T T	
起始结构	4字节长度的总线空闲时间
从设备地址	1字节,内容为0-0xff
功能码	1字节,内容为0x90
数据长度	2字节,内容为2,高字节在前
数据	错误代码,见表2
CRC 校验码	2 字节, 低字节在前
结束结构	4字节长度的总线空闲时间

8.2 寄存器列表

寄存器地址	个数	寄存器内容	状态	数据范围
0x0000	1	模块型号	只读	按模块型号配置,例如:
				MD82
0x0001	1	模块软件件版本	只读	例如5.2, 高字节为主版
				本,低字节为次版本
0x0002	10	模块名称	读写	
0x000C	1	模块地址	读写	0x0000-0x00FF
0x0200	1	DI0的值	只读	0x0000-0x0001
0x0201	1	DI1的值	只读	0x0000-0x0001

0x0202	1	DI2的值	只读	0x0000-0x0001
0x0203	1	DI3的值	只读	0x0000-0x0001
0x0204	1	DI4的值	只读	0x0000-0x0001
0x0205	1	DI5的值	只读	0x0000-0x0001
0x0206	1	DI6的值	只读	0x0000-0x0001
0x0207	1	DI7的值	只读	0x0000-0x0001
0x0208	1	DI8的值	只读	0x0000-0x0001
0x0209	1	DI9的值	只读	0x0000-0x0001
0x020A	1	DI10的值	只读	0x0000-0x0001
0x020B	1	DI11的值	只读	0x0000-0x0001
0x020C	1	DI12的值	只读	0x0000-0x0001
0x020D	1	DI13的值	只读	0x0000-0x0001
0x020E	1	DI14的值	只读	0x0000-0x0001
0x020F	1	DI15的值	只读	0x0000-0x0001
0x0210	1	开关量输入状态	只读	0x0000-0xFFFF

数据位	含义
15	输入端 15 的状态, 1 为断开, 0 为闭合
14	输入端 14 的状态, 1 为断开, 0 为闭合
13	输入端 13 的状态, 1 为断开, 0 为闭合
12	输入端 12 的状态, 1 为断开, 0 为闭合
11	输入端 11 的状态, 1 为断开, 0 为闭合
10	输入端 10 的状态, 1 为断开, 0 为闭合
9	输入端9的状态,1为断开,0为闭合
8	输入端 8 的状态, 1 为断开, 0 为闭合
7	输入端7的状态,1为断开,0为闭合
6	输入端6的状态,1为断开,0为闭合
5	输入端 5 的状态, 1 为断开, 0 为闭合
4	输入端4的状态,1为断开,0为闭合
3	输入端3的状态,1为断开,0为闭合
2	输入端2的状态,1为断开,0为闭合
1	输入端1的状态,1为断开,0为闭合
0	输入端 0 的状态, 1 为断开, 0 为闭合

8.3 错误代码表

错误代码	异常描述
0x0080	寄存器地址错误(无效的寄存器地址)
0x0081	企图写只读寄存器
0x0082	写寄存器数据错误
0x0083	企图读只写寄存器

9.产品保修卡

尊敬的用户:

感谢你购买和使用本公司的产品!为了使我们的服务让您更加满意,购买后请认真阅读此保修条款。我公司所有产品分为带外壳的产品和不带外壳的产品两类。带外壳的产品,为用户提供3个月内换新,5年内保修服务。不带外壳的产品,为用户提供1个月内换新,1年内保修的服务。具体条款如下:

- 1. 产品自出货之日起,如果出现质量问题,提供换新或保修的政策,以保证产品在正常安装与使用下,没有任何材料及制造上的隐患,确保用户放心使用我公司产品。
- 2. 凡是经由天灾,及其它外来因素的影响或因操作不当等因素,造成产品损坏的,不在换新或保修范围之内。是否由于上述原因造成产品损坏,由我公司做出最终判定。未经本公司授权,用户私自拆开产品造成的损坏,也不属换新或保修范围之内。
- 3. 用户购买的产品,以购买日期凭证换新或保修。超过换新期限的产品,用户凭产品保修卡、购买日期凭证维修。经我公司换新或维修后的产品有 90 天保修期,最后保修日的确定是以保修的最后一日和 90 天保修期的最后一日进行了比较,以最后一日为准。
- 4. 超过保修期或不符合保修条件的产品,本公司提供收费维修。
- 5. 所有换新、保修或维修的产品,用户承担运费和运送时的风险。
- 6. 和本保修条款发生冲突的其他口头承诺等,参照本保修条款执行。
- 7. 我公司在产品制造、销售及使用上所担负的责任,均不应超过产品的原始成本。本公司不承担任何连带责任。
- 8. 本条款的解释权归本公司所有。

用户资料:

7.47 24.11	
用户名称:	
地址:	联系电话:
邮编:	E-mail:
产品名称:	产品型号:
购买日期:	发票号:

经销商资料:

经销商名称:	
地址:	联系电话:
邮编:	E-mail: