深圳市新达微电子有限公司

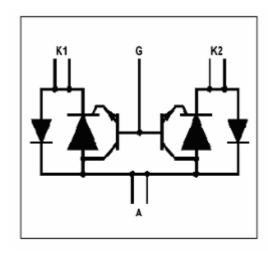
1089-SM-A1

SDT61089

产品说明书

编制	日期
审核	日期
批准	日期

SDT61089


器件特点

- 1 双编程瞬态抑制
- 2 负压范围宽: V_{MGL}=-80V_{MAX}
- 3 动态开关电压低: V_{FP}和V_{DGL}
- 4 门极触发电流低: I_{GT}=5mA_{Max}
- 5 峰值脉冲电流: I_{PP}=50A (10/700 μ s, 2KV)
- 6 维持电流: I_H=150mA

二、描述

SDT61089 主要用于保护SLIC免遭瞬态过压冲击。正向过载由两个二极管来控制,负 向浪涌由两个晶闸管抑制,晶闸管的击穿电压与门极电压-V_{BAT}有关。该器件有非常低的门 极触发电流(I_{GT})以减少电路工作时的损耗。器件结构如图 1 所示。"四点"结构保证了 高可靠的保护,特别是针对非常快速的瞬间线感应过压(Ldi/dt)。

图 1 和图 2 分别为该器件的等效结构图和外形图:

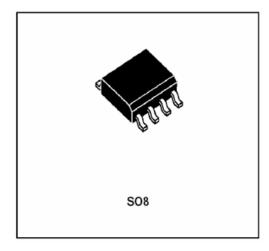


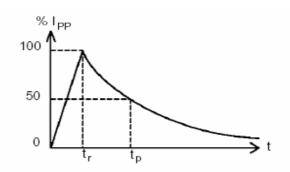
图 1、 器件等效结构图

图 2 、器件外形图

三、产品满足以下标准

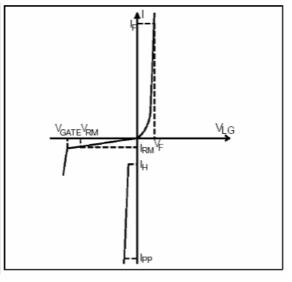
标准类型	波形	数值
ITH T K 20/21	10/700 μ s	1.5KV
ITU-T K.20/21	5/320 μ s	40A

SDT61089


四、电学参数

1、额定参数

符号	参数	数值	单位	
V /I	峰值脉冲电压/电流(注1)	10/700us	1500	V
V_{pp}/I_{PP}	等且 M作电压/电视(注 1)	5/320us	40	A
I_{TSM}	非重复性浪涌峰值电流 t _p =10ms		8	A
TISM	(F=50Hz)	t=1s	3.5	A
I_{GSM}	最大门极电流(半正弦波 tp=	2	A	
V_{MLG}	线地间最大电压	-100	V	
V_{MGL}	门极线间最大电压		-80	
T_{stg}	存储温度范围	-55~150	° C	
T_{j}	最高结温	150	° C	
$T_{ m L}$	10 秒内可承受的最高锡焊温质	260	° C	


注1: 脉冲波形:

10/1000us t_r=10us t_p=1000us

2、伏安特性曲线 (Ta=25°C) 器件的伏安特性曲线如下图

符号	参数
I _{GT}	门极触发电流
$I_{\mathbf{H}}$	维持电流
I _{RM}	线-地间反向漏电流
I_{RG}	门极-线间反向漏电流
V_{RM}	线-地间反向电压
$V_{\mathbf{F}}$	线-地间正向电压
V _{GT}	门极触发电压
V_{FP}	线-地间正向峰值电压
$V_{ t DGL}$	门极-线间动态开关电压
V _{GATE}	门极-地见电压
V_{LG}	线-地间电压
С	线-地间断态电容

SDT61089 可编程瞬态过压保护器

五、测试及详细参数

1、线地间二极管相关参数(Ta=25°C)

符号	测试条件	最大值	单位
V_{F}	$I_F = 5A, t_p = 500us$	3	V
V _{FP}	1.0/700us 1.5kV R _p =10Ω(见注释 1)	5	V

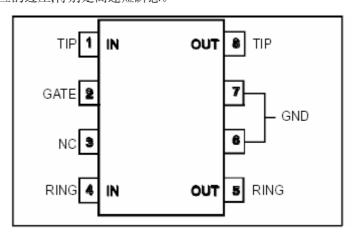
注释 1: V_{FP}见测试电路 2, R_p是装在线卡上的保护电阻。

2、保护晶闸管相关参数(Ta=25°C)

符号	测试条件	最小值	最大值	单位
I_{GT}	V _{GND/LINE} =-48V	0.2	5	mA
I_{H}	V _{GATE} =-48V(见注释 2)	150		mA
V_{GT}	同 IGT		2.5	V
T	$T_c=25^{\circ}C$ $V_{RG}=-75V$		5	4
I_{RG}	$T_c=70^{\circ}C$ $V_{RG}=-75V$		50	uA
V_{DGL}	V _{GATE} =-48V(见注释 3) 1.0/700us 1.5kV R _p =10 Ω		10	V

注释 2: 见测试电路 2 功能维持电流 (IH);

注释 3: 见测试电路 1 关于 V_{DGL}

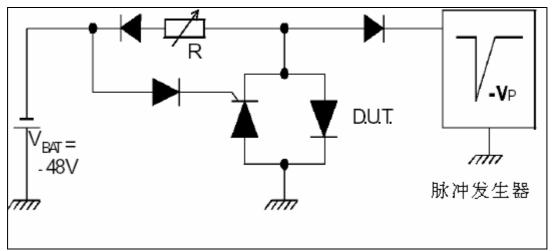

波动时间小于 50ns不作记数。

3、保护晶闸管和二极管相关参数

符号	测试条件	最大值	单位
	$T_c=25$ °C $V_{GATE/LINE}=-1V$ $V_{RM}=-75V$	5	uA
I_{RM}	$T_c=70^{\circ}C$ $V_{GATE/LINE}=-1V$ $V_{RM}=-75V$	50	uA
С	V _R =-3V F=150KHz	100	pF
	V _R =-48V F=150KHz	50	pF

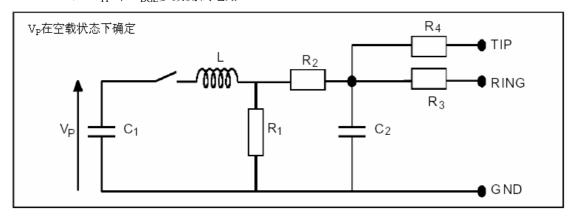
4、应用注意

为了更好地发挥"四点"结构的优势,TIP 和 RING 横向穿过器件,这样器件将消除线寄生感应的过压,特别是高速短瞬态。



SDT61089 可编程瞬态过压保护器

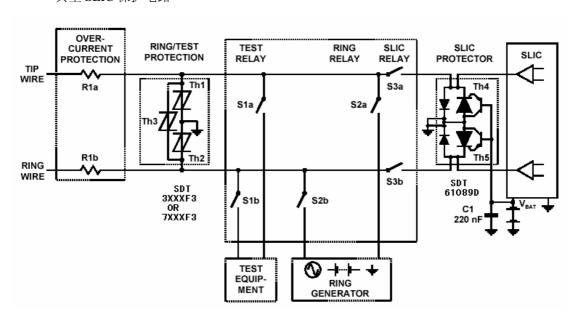
5、测试方法及电路


1) 维持电流测试电路(测试电路1):

这是一个"导通-截止"测试,该测试电路可以确定维持电流的大小。 测试方法:

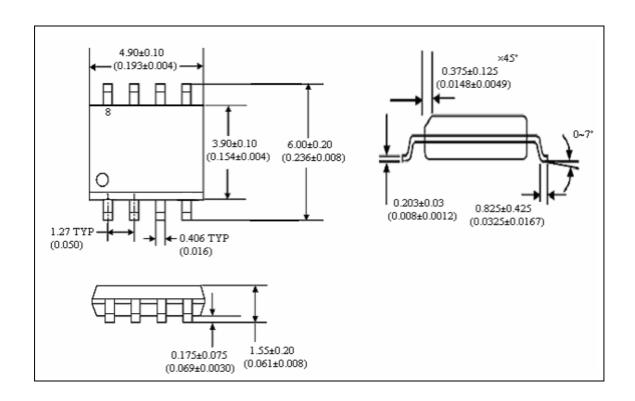
- ① 短路DUT,调节电流在I_H值范围;
- ② 用I_{PP}=10A, 10/1000 µ s的浪涌电流触发DUT;
- ③ DUT 最多在 50ms 内必须返回到断态。

2) V_{FP} 和V_{DGL}参数测试电路 2

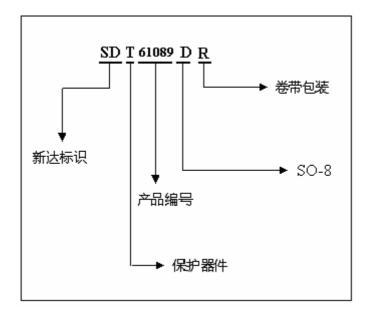

Plus	e(us)	Vp	C_1	C_2	L	R_1	R_2	R_3	R4	I_{pp}	R_p
t_r	t_p	(V)	(uF)	(uF)	(uH)	(Ω)	(Ω)	(Ω)	(Ω)	(A)	(Ω)
10	700	1500	20	200	0	50	15	25	25	30	10
1.2	50	1500	1	33	0	76	13	25	25	30	10
2	10	2500	10	0	1. 1	1.3	0	3	3	38	62

-4-

SDT61089 可编程瞬态过压保护器


六、应用电路

典型 SLIC 保护电路


七、器件封装及尺寸

SO-8 封装,外形及尺寸如下图所示:

SDT61089

八、命名规则

九、标识

型号	标识	封装	订购号	包装	数量
SDT61089	P61089	SO-8	SDT61089D	管装	100

-6-

www.szns.com