

Current Limit Function. SOP (1 Form A) 4-pin type.

GU PhotoMOS (AQY210LS)

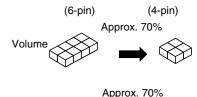
4.3 .169 .173 .2.1 .083

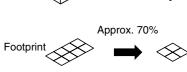
mm inch

RoHS Directive compatibility information

http://www.mew.co.jp/ac/e/environment/

FEATURES


1. Current Limit Function


To control an over current from flowing, the current limit function has been realized. It keeps an output current at a constant value when the current reaches a specified current limit value.

2. Enhancing the capability of surge resistance between output terminals The current limit function controls the ON time surge current to enhance the capability of surge resistance between output terminals.

3. SO package 4-Pin type in super miniature design

The device comes in a super-miniature SO package 4-Pin type measuring (W) $4.3\times(L)$ $4.4\times(H)$ 2.1 mm (W) $.169\times(L)$ $.173\times(H)$.083 inch—approx. 70% of the volume and 70% of the footprint size of SO package 6-pin type PhotoMOS Relays.

4. Tape and reel

The device comes standard in a tape and reel (1,000 pcs./reel) to facilitate automatic insertion machines.

- 5. Controls low-level analog signals
- 6. Low-level off state leakage current

TYPICAL APPLICATIONS

- Telephone equipment
- Modem

TYPES

Туре	Output rating*		Package	Part No.			Packing quantity	
	Load voltage	Load current	size	Tube packing style	Tape and reel	packing style	Tube	Tape and reel
AC/DC type	350V	120mA	SOP4pin	AQY210LS	AQY210LSX (Picked from the 1/2-pin side)	AQY210LSZ (Picked from the 3/4-pin side)	1 tube contains: 100 pcs. 1 batch contains: 2,000 pcs.	1,000 pcs.

^{*} Indicate the peak AC and DC values.

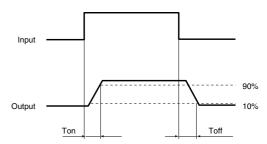
Note: For space reasons, the initial letters of the part number "AQY", the SMD terminal shape indicator "S" and the packaging style indicator "X" or "Z" are not marked on the relay. (Ex. the label for product number AQY210LS is 210L)

RATING

1. Absolute maximum ratings (Ambient temperature: 25°C 77°F)

Item		Symbol	AQY210LS	Remarks
	LED forward current	lF	50 mA	
Input	LED reverse voltage	VR	5 V	
	Peak forward current	IFP	1 A	f = 100 Hz, Duty factor = 0.1%
	Power dissipation	Pin	75 mW	
	Load voltage (peak AC)	VL	350 V	
Output	Continuous load current	Iι	0.12 A	
	Power dissipation	Pout	300 mW	
Total power dissipation		Рт	350 mW	
I/O isolation voltage		Viso	1,500 V AC	
Tempera limits	ature Operating	Topr	-40°C to +85°C -40°F to +185°F	Non-condensing at low temperatures
	Storage	T _{stg}	-40°C to +100°C -40°F to +212°F	

GU PhotoMOS (AQY210LS)

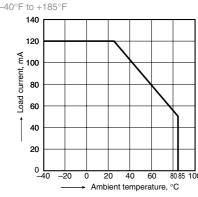

2. Electrical characteristics (Ambient temperature: 25°C 77°F)

	Item		Symbol	AQY210LS	Condition	
	LED operate	Typical	1-	1.2 mA	IL = Max.	
	current	Maximum	Fon	3 mA	IL = IVIAX.	
Innut	LED turn off	Minimum	Foff	0.4 mA	IL = Max.	
Input	current	Typical	II-off	1.1 mA	IL = IVIAX.	
	LED dropout	Minimum	VF	1.25 (1.14 V at I _F = 5 mA)	I _F = 50 mA	
	voltage	Typical	V F	1.5 V		
		Typical		20Ω	I _F = 5 mA	
	On resistance	Maximum	Ron	25Ω	I∟ = Max. Within 1 s on time	
Output	Off state leakage current	Maximum	Leak	1μΑ	I _F = 0 V _L = Max.	
	Current limit	Typical	_	0.18 A	I _F = 5 mA	
	Turn on time*	Typical	Ton	0.5 ms	I _F = 5 mA I _L = Max.	
	Turn on time	Maximum	Ion	2.0 ms		
	Turn off time*	Typical	Toff	0.08 ms	I _F = 5 mA I _L = Max.	
Transfer	Turn on time	Maximum	loff	1.0 ms		
characteristics	I/O conscitores	Typical		0.8 pF	f = 1 MHz	
	I/O capacitance	Maximum	Ciso	1.5 pF	V _B = 0 V	
	Initial I/O isolation resistance	Minimum	Riso	1,000 ΜΩ	500 V DC	

Note: Recommendable LED forward current IF= 5 mA.

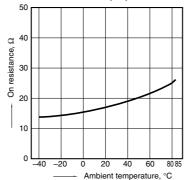
For type of connection.

*Turn on/Turn off time

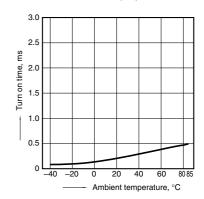

- **■** For Dimensions.
- **■** For Schematic and Wiring Diagrams.
- **■** For Cautions for Use.

REFERENCE DATA

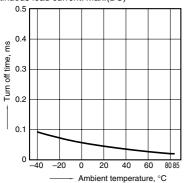
1. Load current vs. ambient temperature characteristics


Allowable ambient temperature:

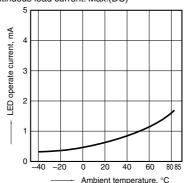
-40°C to +85°C


2. On resistance vs. ambient temperature characteristics

Measured portion: between terminals 3 and 4; LED current: 5 mA; Load voltage: Max. (DC) Continuous load current: Max.(DC)

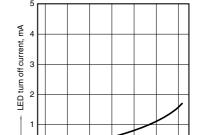

3. Turn on time vs. ambient temperature characteristics

LED current: 5 mA; Load voltage: Max.(DC); Continuous load current: Max.(DC)



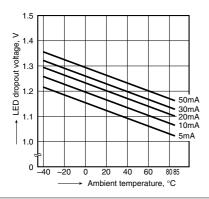
GU PhotoMOS (AQY210LS)

- 4. Turn off time vs. ambient temperature characteristics
- LED current: 5 mA; Load voltage: Max.(DC); Continuous load current: Max.(DC)

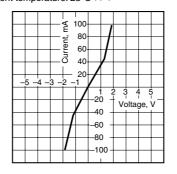

5. LED operate current vs. ambient temperature characteristics Load voltage: Max.(DC); Continuous load current: Max.(DC)

6. LED turn off current vs. ambient temperature characteristics

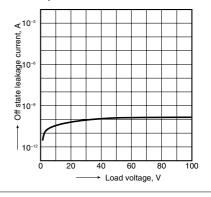
Load voltage: Max.(DC); Continuous load current: Max.(DC)


-40

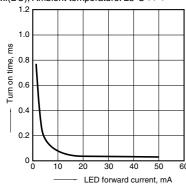
20 40 60


Ambient temperature, °C

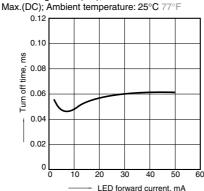
7. LED dropout voltage vs. ambient temperature characteristics LED current: 5 to 50 mA


8. Current vs. voltage characteristics of output at MOS portion

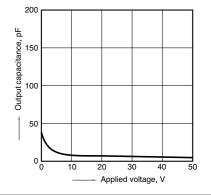
Measured portion: between terminals 3 and 4; Ambient temperature: 25°C 77°F


Off state leakage current vs. load voltage characteristics

Measured portion: between terminals 3 and 4; Ambient temperature: 25°C 77°F


10. Turn on time vs. LED forward current characteristics

Measured portion: between terminals 3 and 4; Load voltage: Max.(DC); Continuous load current: Max.(DC); Ambient temperature: 25°C 77°F


11. Turn off time vs. LED forward current characteristics

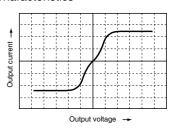
Measured portion: between terminals 3 and 4; Load voltage: Max.(DC); Continuous load current:

12. Output capacitance vs. applied voltage characteristics

Measured portion: between terminals 3 and 4; Frequency: 1 MHz; Ambient temperature: 25°C 77°F

What is current limit

When a load current reaches the specified output control current, a current limit function works against the load current to keep the current a constant value.


The current limit circuit built into the PhotoMOS relay thus controls the instantaneous load current to effectively ensure circuit safety.

This safety feature protects circuits downstream of the PhotoMOS relay against over-current.

But, if the current-limiting feature is used longer than the specified time, the PhotoMOS relay can be destroyed. Therefore, set the output loss to the max. rate or less.

• Comparison of output voltage and output current characteristics

V-I Characteristics

