

Tentative Ver. 0.01

LTPS LCD Specification

Model Name: TC015THEBB

Customer Signature						
Date						

This technical specification is subjected to change without notice

The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.

Table of Contents

NO.	Item	Page
	Cover Sheet	1
	Table of Contents	2
	Record of Revision	3
1	Features	4
2	General Specifications	4
3	Input / Output Terminals	5
4	Absolute Maximum Ratings	6
5	Electrical Characteristics	7
6	Timing Chart	10
7	Optical Characteristics	13
8	Reliability	16
9	Handling Cautions	17
10	Mechanical Drawing	18
11	Packing Drawing	19

Record of Revision

Rev	Issued Date	Description
0.00	Sep 23, 2004	New Create
0.01	Dec 10,2004	Modify:
		1. Page 6:VPCD change to PCD
		2. Page 7:V block(H) change to V black(H)
		3. Page 8:S&H Gamma Contract Bright change to S&H Gamma
		Contrast Brightness

The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.

1. FEATURES

The 1.5"(3.86 cm) LCD module is an active matrix color TFT LCD module with Digital and Analog Interface. LTPS (Low Temperature Poly Silicon) TFT technology is used. Vertical and horizontal drivers are built on the panel. NTSC and PAL format are compatible. Horizontal scan can be from left to right or from right to left, and Vertical scan can be from up to down or from down to up.

2. GENERAL SPECIFICATIONS

Item	Description	Unit
Display Size (Diagonal)	1.5 (3.86)	Inch (cm)
Display Type	Transmissive	
Active Area (HxV)	31.22 x 22.815	mm
Number of Dots (HxV)	557 x 234	dot
Dot Pitch (HxV)	0.056 x 0.0975	mm
Color Arrangement	RGB Delta	
Color Numbers	16Million / Full Color	
Outline Dimension (HxVxT)	37.1 x 32.7 x 2.85*	mm
Weight	7.0	g

^{*} Exclude FPC and protrusions.

3. INPUT/OUTPUT TERMINALS

3.1 TFT LCD Panel

Pin	Symbol	I/O	Description	Remark
1	NC	-	No Connection	
2	V _{FS}	I	GND For LED Backlight	
3	V _F	I	LED Input Voltage	
4	NC	-	No Connection	
5	NC	-	No Connection	
6	NC	-	No Connection	
7	VCOM	I	Common Electrode Voltage	
8	CKV1	I	Vertical Clock 1	
9	CKV2	I	Vertical Clock 2	
10	STV	I	Vertical Start Signal	
11	XSTV	I	Inverted Signal Of STV	
12	VVDD	I	Power Supply For Vertical Driver	
13	ENB	I	Enable Signal	
14	XENB	I	Inverted Signal Of ENB	
15	CSV	I	UP/DOWN Reverse Control Signal	Note 3-1
10	VBB	0	Vertical Driver Output Power Voltage	Note 0.0
16	NC	-	No Connection	Note 3-2
17	PCG	I	Precharge Data Signal	
18	XPCG	I	Inverted Signal Of PCG	
19	PCD	I	Precharge Data Signal For Pixel	
20	В	I	Video Signal (B)	
21	R	I	Video Signal (R)	
22	G	I	Video Signal (G)	
23	CSH	I	RIGHT/LEFT Reverse Control Signal	Note 3-3
24	VVEE	I	Vertical Driver Negative Power Supply Voltage	Note 2.4
24	VSS	I	GND	Note 3-4
25	VSS	I	GND	
26	STH	I	Horizontal Start Signal	
27	XSTH	I	Inverted Signal Of STH	
28	HVDD	I	Power Supply For Horizontal Driver	
29	CKH1	I	Horizontal Clock 1	
30	CKH2	I	Horizontal Clock 2	

The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.

Note 3-1: H: Normal scan

L: Reverse scan

toppoly

toppoly

Note 3-2 VBB is used for digital interface; NC is used for analog interface.

Note 3-3: H: Normal scan

L: Reverse scan

toppoly

toppoly

Note 3-4 VVEE is used for digital interface; VSS is used for analog interface.

4. ABSOLUTE MAXIMUM RATINGS

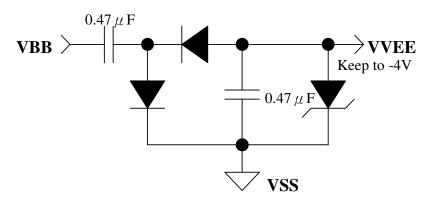
VSS=0V

Item	Symbol	Min	MAX	Unit	Remark
Power Supply for Horizontal Driver	HVDD	-1.0	+14	V	
Power Supply for Vertical Driver	VVDD	-1.0	+14	V	
Vertical Driver Negative Power Supply	\//⊏⊏	0.0	1.0		
Voltage	VVEE	-6.0	-1.0	V	
Common Electrode Voltage	VCOM	-1.0	+14	V	
Horizontal Driver / Precharge Data Input	STH, XSTH, CKH1,	-1.0	+14	V	
Voltage	CKH2, CSH, PCG,				
	XPCG				
Vertical Driver / Precharge Data Input	STV, XSTV, CKV1,	-1.0	+14	V	
Voltage	CKV2,				
	CSV, ENB, XENB				
Video / Precharge Data Input Voltage	VG, VR, VB, PCD	-1.0	+13	V	
Back Light Forward Current	I _F	-	25	mA	Note 4-1
Operating Temperature	Topr	-10	+60	$^{\circ}\!\mathbb{C}$	
Storage Temperature	Tstg	-30	+80	$^{\circ}\!\mathbb{C}$	

Note 4-1: Ta=25°C

The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.

5. ELECTRICAL CHARACTERISTICS


5.1 Driving TFT LCD Panel with Digital Interface

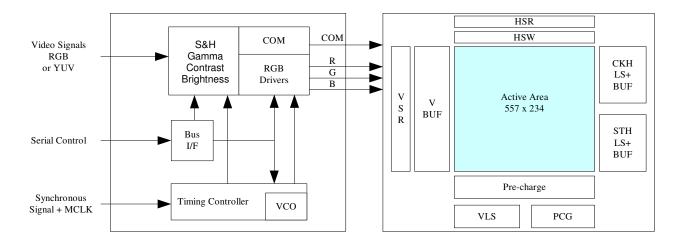
VSS=0V, Ta=25°C

Item		Symbol	MIN	TYP	MAX	Unit	Remark
Power Supply for Hori	izontal Driver	HVDD	8.2	8.5	8.8	V	
Power Supply for Vert	ical Driver	VVDD	8.2	8.5	8.8	V	
Vertical Driver Neg Supply Voltage	gative Power	VVEE	-	-4.0	-	٧	Note 5-1
Horizontal Driver	Low	VHIL	-0.3	0.0	0.3	V	
Input Voltage	High	VHIH	2.5	3.0	4.0	V	
Vertical Driver Input	Low	VVIL	-0.3	0.0	0.3	V	
Voltage	High	VVIH	2.5	3.0	4.0	V	
CSH, CSV	Low	VSIL	-0.3	0.0	0.3	V	
CSH, CSV	High	VSIH	8.2	8.5	8.8	V	
Video Signal Center V	oltage/	VVC	2.4	2.6	2.8	V	Note 5-2
	Black (H)	V black (H)	4.0	4.2	4.6		
Video Signal Voltage	Black (L)	V black (L)	0.8	1.0	1.2		
	White-Black	V sig w-b	-	-	3.00	V	
Common Electrode	Signal Center	VCOM c	(VVC-0.2)	(VVC-0.2)	(VVC-0.2)	V	
Voltage	VCOIVI C	-0.2	(V V O-0.2)	+ 0.2	\ \	Note 5-3	
Common Electrode Range	VCOM p-p	-	3.8	-	٧	INOLE 3-3	
Panel Power Consum	ption	W_P	-	21	-	mW	

Note 5-1 Negative Power Supply Generator

To stabilize VBB output voltage, VBB should be tied VSS through a zener diode with smoothing capacitor as the following diagram.

Note 5-2: Video signal and precharge data signal shall be input symmetrically around VVC.


Note 5-3: Set common electrode voltage to the optimum voltage.

Page: 7/19

The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.

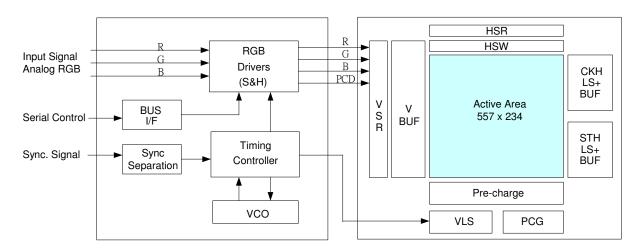
5.1.1 Driving TFT LCD Panel Block Diagram

5.2 Driving TFT LCD Panel with Analog Interface

VSS=0V, Ta=25°C

						,	-
Item		Symbol	MIN	TYP	MAX	Unit	Remark
Power Supply for Vert	ical Driver	VVDD	11.7	12	12.3	V	
Power Supply for Hori	zontal Driver	HVDD	11.7	12	12.3	V	
Horizontal Driver	Low	VHIL	-0.3	0.0	0.3	V	
Input Voltage	High	VHIH	2.5	3.0	4.0	V	
Vertical Driver Input	Low	VVIL	-0.3	0.0	0.3	V	
Voltage	High	VVIH	2.5	3.0	4.0	V	
CSH, CSV	Low	VSIL	-0.3	0.0	0.3	V	
CSH, CSV	High	VSIH	11.7	12	12.3	V	
Video Signal Center V	oltage	VVC	5.0	5.2	5.4	V	Note 5-4
Video Input Voltage Range		VG, VR, VB	VCC-3.5		VVC+3.5	V	
Common Electrode Voltage		VCOM		VVC-0.2		V	Note 5-5
Panel Power Consum	ption	W _P		43		mW	

Note 5-4: Video signal and precharge data signal shall be input symmetrically around VVC.


Note 5-5: Set common electrode voltage to the optimum voltage.

Page: 8/19

The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.

5.2.1 Driving TFT LCD Panel Block Diagram

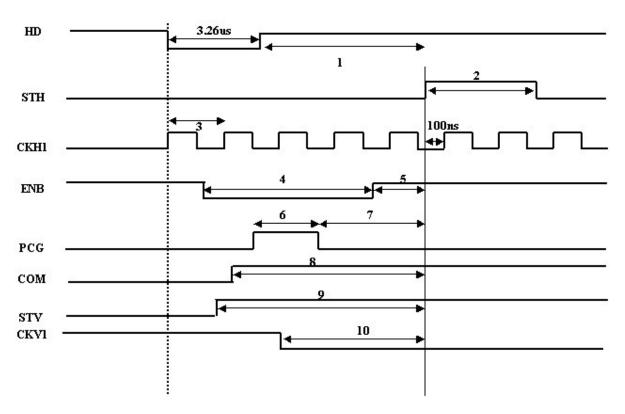
5.3 Driving Backlight

Ta=25°C

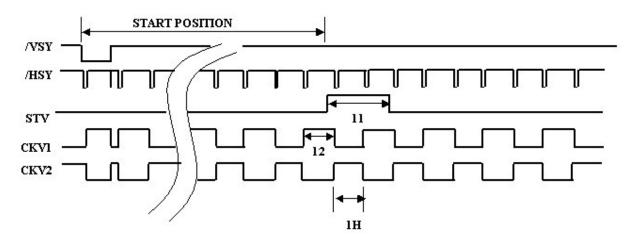
Item	Symbol	MIN	TYP	MAX	Unit	Remark
Forward Current	I _F		20	25	mA	
Forward Current Voltage	V_{F}		3.6		V	Note 5-6
Backlight Power Consumption	W_{BL}		72		mW	

Note 5-6: Backlight driving circuit is recommended as the fix current circuit.

Page: 9/19



6 TIMING CHART


6.1 Timing Chart with Digital Interface

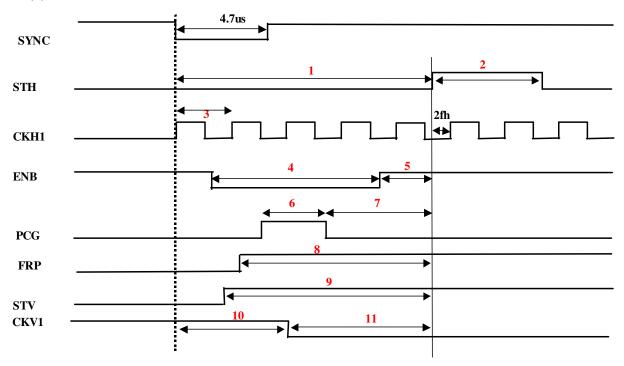
1	2	3	4	5	6	7	8	9	10	11	12
9.94us	1.18us	540ns	7.26us	1.06us	3.98us	1.62us	5.24us	8.04us	3.34us	127.1us	63.56us

6.1.1 Horizontal

6.1.2 Vertical

The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.

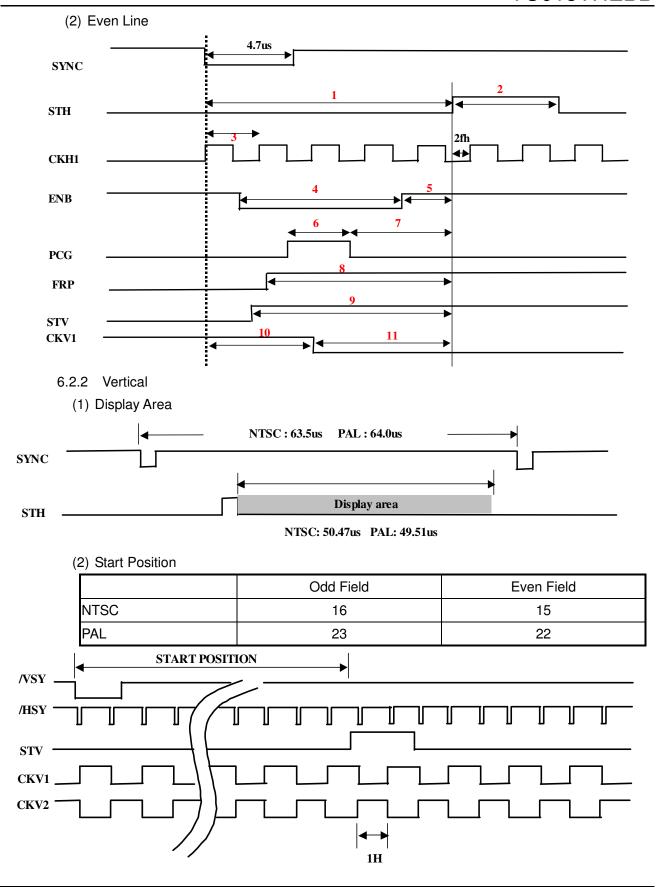
Page: 10/19



6.2 Timing chart with Analog Interface

6.2.1 Horizontal

	NTSC	PAL	1(fh)	O/fh)	2/fb)	4(fh)	5(fh)	6(fh)	7(fh)	8(fh)	9(fh)	10(fh)	11(fh)
	Cycle(fh)	Cycle(fh)		2(fh)	3(fh)	4(111)	3(111)	0(111)	7 (111)	0(111)	9(111)	10(111)	11(111)
Odd	622	636	82.5	12	6	69	9.5	25	19.5	31.5	76.5	50	32.5
Line	(t=102.2ns)	(t=100.6ns)	02.5	12	О	69	9.5	25	19.5	31.5	76.5	50	32.5
Even	622	636	0.1	10	(CO	0	O.F.	10	20	75	F.0	00 F
Line	(t=102.2nS)	(t=100.6nS)	81	12	6	69	8	25	18	30	75	50	32.5


(1) Odd Line

Page: 11/19

The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.

The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.

Page: 12/19

7 OPTICAL CHARACTERISTICS

7.1 Optical Specification

Ta=25°C

Item		Symbol	Condition	MIN	TYP	MAX	Unit	Remarks	
		⊖11		30	40				
N/I in A I		⊖12	CR ≥ 10	30	40		Dograd	Note 7 1	
Viewing Angles		⊖21	ON 2 10	11	16		Degree	Note 7-1	
		⊖22	∋22		55				
Contrast Ratio		CR	⊖=0°	120	200			Note 7-2	
Posponso Timo	Rising	Tr			15	25	mo	Note 7-3	
Response Time	Falling	Tf			25	45	ms	Note 7-3	
Luminance (I _F =20mA)		L	⊖=0°	190	240		cd//m ²	Note 7-4	
Chromoticity	White	X _W	⊖=0°	0.26	0.31	0.36		Note 7-5	
Chromaticity	vviile	yw	⊖=0°	0.29	0.34	0.39		INULE 7-5	

7.2 Basic Measure Conditions

(1) Driving voltage

Driving voltage with Digital Interface

HVDD= 8.5V, VVDD=8.5V

VVC=2.6V, VCOM = Optimum common electrode voltage

Driving voltage with Analog Interface

HVDD= 12.0V, VVDD=12.0V

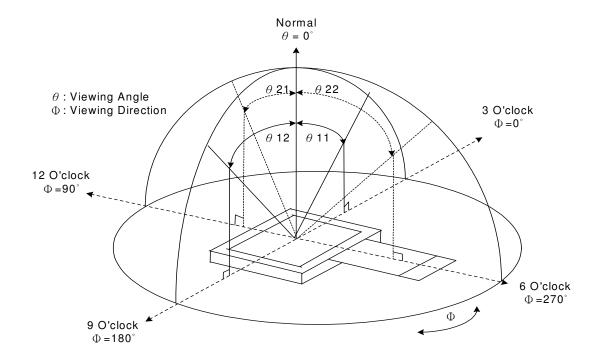

VVC=5.2V, VCOM = Optimum common electrode voltage

- (2) Ambient Temperature: Ta=25°C
- (3) Testing Point: Measure in the display center point and the test angle $\theta = 0^{\circ}$
- (4) R, G, B signal input voltage VG, VR, VB

VG, VR, VB=VVC ± VAC (VAC: Signal Amplitude)

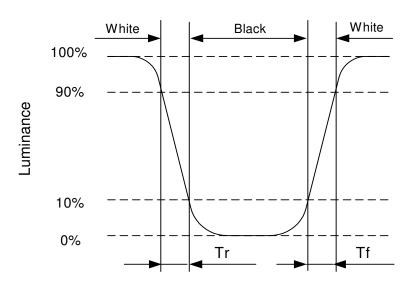
- (5) LED Current: I_F=20mA.
- (6) Testing Facility

Environmental illumination: ≤ 1 Lux



The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.

Page: 13/19


Note 7-1: Viewing angle diagrams:

Note 7-2: Contrast Ratio:

Contrast ratio is measured in optimum common electrode voltage.

Note 7-3: Definition of response time:

The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.

Page: 14/19

Note 7-4: Luminance:

Test Point: Display Center

Note 7-5: Chromaticity: The same test condition as Note 7-4.

Page: 15/19

8 REILIABILITY

No	Test Item	Condition
1	High Temperature Operation	Ta=+60°C, 240hrs
2	High Temperature & High Humidity Operation	Ta=+40°C, 95% RH, 240hrs
3	Low Temperature Operation	Ta=-10°ℂ, 240hrs
4	High Temperature Storage (non-operation)	Ta=+80°C, 240hrs
5	Low Temperature Storage (non-operation)	Ta=-30°ℂ , 240hrs
6	Thermal Shock (non-operation)	-30°C ←→80°C, 50 cycles
		30 min 30 min
7	Resistance to Static Electricity Discharge (non-operation)	C=200pF, R=0Ω;
		Discharge: ±150V
		3 times / Terminal
8	Surface Discharge (non-operation)	C=150pF, R=330 Ω ;
		Discharge: Air: ±15kV; Contact: ±8kV
		5 times / Point; 5 Points / Panel
9	Vibration (non-operation)	Frequency: 10~55Hz; Amplitude: 1.5mm
		Sweep Time: 11min
		Test Time: 2 hrs for each direction of X, Y, Z
10	Shock (non-operation)	Acceleration: 100G; Period: 6ms
		Directions: ±X, ±Y, ±Z; Cycles: Twice

Ta: Ambient Temperature

Page: 16/19

9 HANDLING CAUTIONS

9.1 ESD (Electrical Static Discharge) Strategy

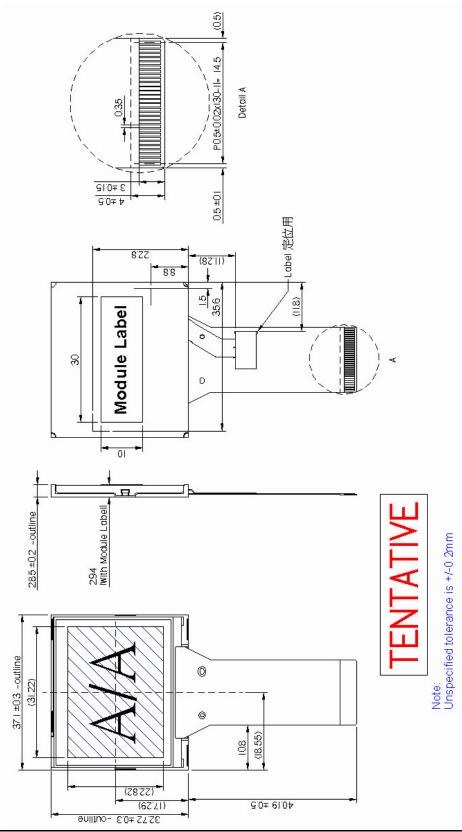
ESD will cause serious damage of the panel, ESD strategy is very important in handling. Following items are the recommended ESD strategy

- (1) In handling LCD panel, please wear non-charged material gloves. Connect the wrist conduction ring to the earth and the conducting shoes to the earth are necessary.
- (2) The machine and working table for the panel should have ESD protection strategy.
- (3) In handling the panel, using ionized air to decrease the charge in the environment is necessary.
- (4) In the process of assembly the module, shield case should connect to the ground.

9.2 Environment

- (1) Working environment of the panel should be in the clean room.
- (2) The front polarizer is easy damaged. Handle it carefully and do not scratch it by sharp material.
- (3) Panel has polarizer protective film in the surface. Please remove the protection film of polarizer slowly with ionized air to prevent the electrostatic discharge.

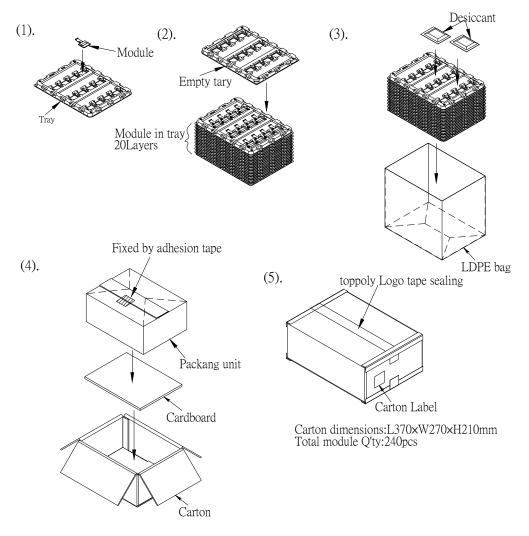
9.3 Others


- (1) Turn off the power supply before connecting and disconnecting signal input cable.
- (2) The connection area of FPC and panel is very weak, do not handle panel only by FPC or bend FPC.
- (3) Water drop on the surface or condensation as panel power on will corrode panel electrode.
- (4) As the packing bag open, watch out the environment of the panel storage. High temperature and high humidity environment is prohibited.
- (5) When the TFT LCD module is broken, please watch out whether liquid crystal leaks out or not. If your hand touches liquid crystal, wash your hand cleanly by water and soap as soon as possible.

The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.

Page: 17/19

10 MECHANICAL DRAWING



The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.

Page: 18/19

11 PACKING DRAWING

1.5" (TC015THEBB) Module delivery packing method

- (1). Module packed into tray cavity (with Module display face down)
- (2) . Tray stacking with 20 layers and with 1 empty tray above the stacking tray unit
- (3) . 2pcs desiccant put above the empty tray. Stacking tray unit put into the LDPE bag and fixed by adhesive tape.
- (4) . Put 1pc cardboard inside the carton bottom, then pack the package unit into the carton
- (5) . Carton tapping with adhesive tape

The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.

Page: 19/19