

May 1999

LM837

Low Noise Quad Operational Amplifier

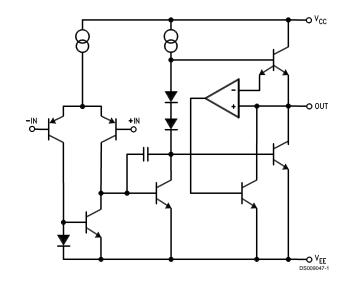
General Description

The LM837 is a quad operational amplifier designed for low noise, high speed and wide bandwidth performance. It has a new type of output stage which can drive a 600Ω load, making it ideal for almost all digital audio, graphic equalizer, preamplifiers, and professional audio applications. Its high performance characteristics also make it suitable for instrumentation applications where low noise is the key consideration.

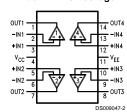
The LM837 is internally compensated for unity gain operation. It is pin compatible with most other standard quad op amps and can therefore be used to upgrade existing systems with little or no change.

Features

■ High slew rate
 10 V/µs (typ); 8 V/µs (min)
 ■ Wide gain bandwidth product (min)
 25 MHz (typ); 15 MHz (min)


■ Power bandwidth■ High output current200 kHz (typ)±40 mA

■ Excellent output drive performance >600Ω ■ Low input noise voltage 4.5 nV//Hz


■ Low total harmonic distortion 0.0015%

■ Low offset voltage 0.3 mV

Schematic and Connection Diagrams

Dual-In-Line Package

Top View Order Number LM837M or LM837N See NS Package Number M14A or N14A

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage, V_{CC}/V_{EE} ±18V Differential Input Voltage, $V_{\rm ID}$ (Note 2) ±30V Common Mode Input Voltage, VIC ±15V (Note 2)

1.2W (N) Power Dissipation, P_D (Note 3) 830 mW (M)

-40°C to +85°C Operating Temperature Range, Topa

Storage Temperature Range, T_{STG} -60°C to $+150^{\circ}\text{C}$

Soldering Information Dual-In-Line Package

Soldering (10 seconds)

Small Outline Package Vapor Phase (60 seconds) 215°C

260°C

220°C

Infrared (15 seconds) ESD rating to be determined.

See AN-450 "Surface Mounting Methods and Their Effect

on Product Reliability" for other methods of soldering surface mount devices.

DC Electrical Characteristics

 $T_A = 25^{\circ}C, V_S = \pm 15V$

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{os}	Input Offset Voltage	$R_S = 50\Omega$		0.3	5	mV
I _{os}	Input Offset Current			10	200	nA
I _B	Input Bias Current			500	1000	nA
A _V	Large Signal Voltage Gain	$R_L = 2 k\Omega, V_{OUT} = \pm 10V$	90	110		dB
V _{OM}	Output Voltage Swing	$R_L = 2 k\Omega$	±12	±13.5		V
		$R_L = 600\Omega$	±10	±12.5		V
V _{CM}	Common Mode Input Voltage		±12	±14.0		V
CMRR	Common Mode Rejection Ratio	$V_{IN} = \pm 12V$	80	100		dB
PSRR	Power Supply Rejection Ratio	V _S = 15 ~ 5, -15 ~ -5	80	100		dB
I _s	Power Supply Current	R _L = ∞, Four Amps		10	15	mA

AC Electrical Characteristics

 $T_A = 25^{\circ}C, V_S = \pm 15V$

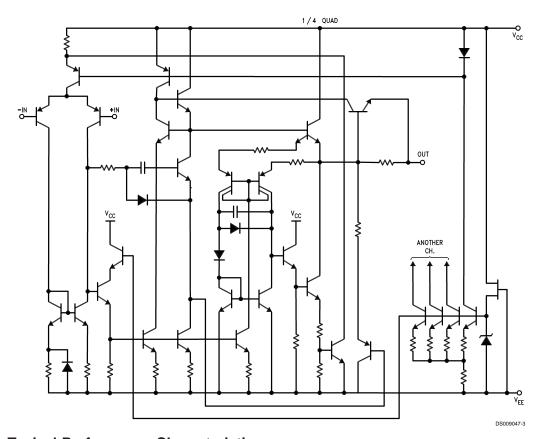
Symbol	Parameter	Condition	Min	Тур	Max	Units
SR	Slew Rate	$R_L = 600\Omega$	8	10		V/µs
GBW	Gain Bandwidth Product	$f = 100 \text{ kHz}, R_L = 600\Omega$	15	25		MHz

Design Electrical Characteristics

 $T_A = 25^{\circ}C, V_S = \pm 15V \text{ (Note 4)}$

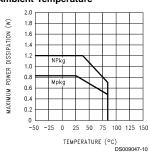
Symbol	Parameter	Condition	Min	Тур	Max	Units
PBW	Power Bandwidth	$V_{\rm O}$ = 25 $V_{\rm P-P}$, $R_{\rm L}$ = 600 Ω , THD < 1%		200		kHz
e _{n1}	Equivalent Input Noise Voltage	JIS A, $R_S = 100\Omega$		0.5		μV
e _{n2}	Equivalent Input Noise Voltage	f = 1 kHz				nV/
				4.5		√Hz
i _n	Equivalent Input Noise Current	f = 1 kHz				pA/
				0.7		√Hz
THD	Total Harmonic Distortion	$A_V = 1, V_{OUT} = 3 \text{ Vrms},$ $f = 20 \sim 20 \text{ kHz}, R_L = 600\Omega$		0.0015		%
f _U	Zero Cross Frequency	Open Loop		12		MHz
φ _m	Phase Margin	Open Loop		45		deg
	Input-Referred Crosstalk	f = 20 ~ 20 kHz		-120		dB
ΔV _{OS} /ΔT	Average TC of Input Offset Voltage			2		μV/°C

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

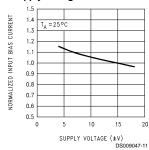

Note 2: Unless otherwise specified the absolute maximum input voltage is equal to the power supply voltage.

Design Electrical Characteristics (Continued)

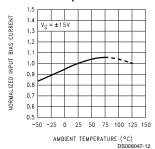
Note 3: For operation at ambient temperatures above 25°C, the device must be derated based on a 150°C maximum junction temperature and a thermal resistance, junction to ambient, as follows: LM837N, 90°C/W; LM837M, 150°C/W.


Note 4: The following parameters are not tested or guaranteed.

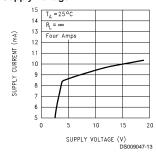
Detailed Schematic

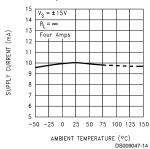


Typical Performance Characteristics

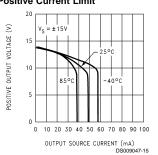

Maximum Power Dissipation vs Ambient Temperature

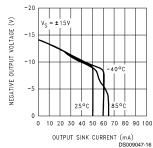
Normalized Input Bias Current vs Supply Voltage

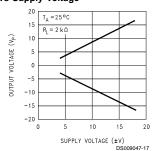

Normalized Input Bias Current vs Ambient Temperature

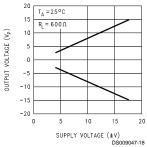

www.national.com

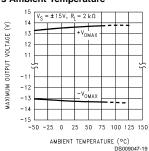
Typical Performance Characteristics (Continued)

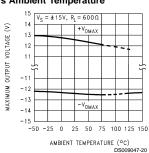

Supply Current vs Supply Voltage

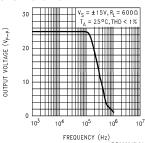

Supply Current vs Ambient Temperature


Positive Current Limit

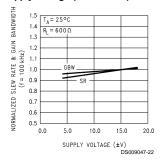

Negative Current Limit


Maximum Output Voltage vs Supply Voltage

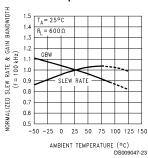

Maximum Output Voltage vs Supply Voltage


Maximum Output Voltage vs Ambient Temperature

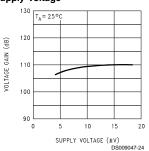
Maximum Output Voltage vs Ambient Temperature

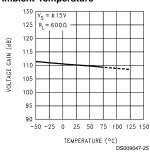


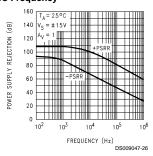
Power Bandwidth

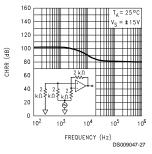


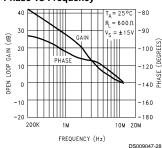
Typical Performance Characteristics (Continued)

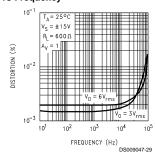

Normalized Slew Rate & Gain Bandwidth vs Supply Voltage (f = 100 kHz)

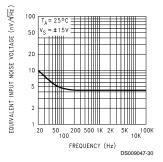

Normalized Slew Rate & Gain Bandwidth (f = 100 kHz) vs Ambient Temperature


Voltage Gain vs Supply Voltage

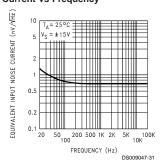

Voltage Gain vs Ambient Temperature


Power Supply Rejection vs Frequency

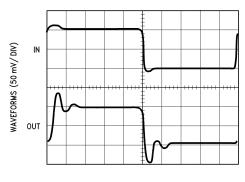

CMRR vs Frequency


Open Loop Gain & Phase vs Frequency

Total Harmonic Distortion vs Frequency

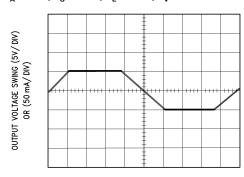


Equivalent Input Noise Voltage vs Frequency



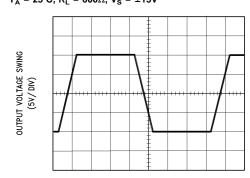
Typical Performance Characteristics (Continued)

Equivalent Input Noise Current vs Frequency



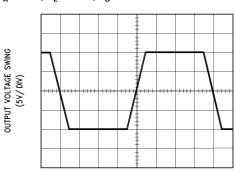
Small Signal, Non-Inverting
$${
m T_A}$$
 = 25°C, ${
m A_V}$ = 1, ${
m R_L}$ = 600 ${
m \Omega}$, ${
m V_S}$ = ±15V

TIME $(0.1 \,\mu\text{s}/\text{DIV})$ DS009047-6

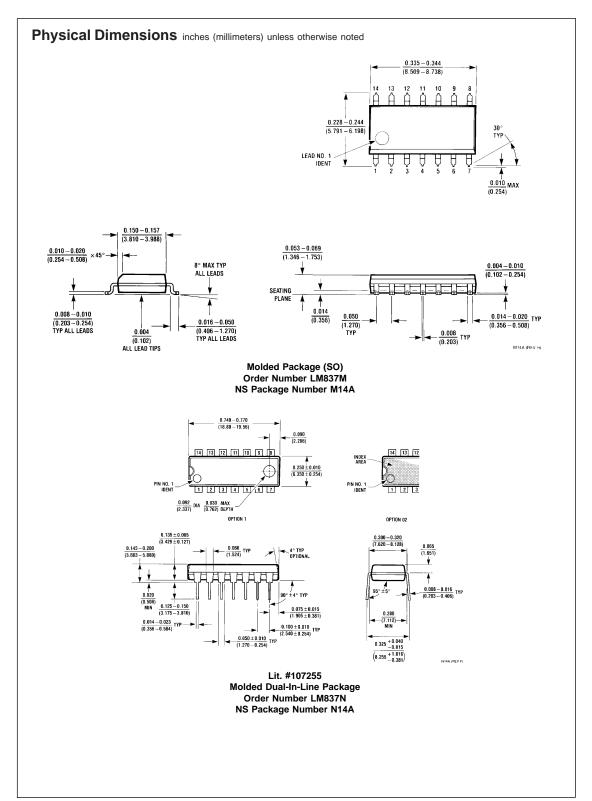

Current Limit
$${\rm T_A = 25^{\circ}C,\,V_S = \pm 15V,\,R_L = 100\Omega,\,A_V = 1}$$

TIME (0.1 ms / DIV)

DS009047-7


Large Signal Non-Inverting T_A = 25°C, R_L = 600 Ω , V_S = ±15V

TIME (1 μ s / DIV)


DS009047-8

Large Signal Inverting $T_A = 25^{\circ}C$, $R_L = 600\Omega$, $V_S = \pm 15V$

TIME (1 μs / DIV)

DS009047-9

Notes

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor Europe

Europe
Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-532 93 58
Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507