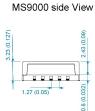
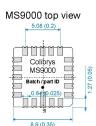


Data sheet MS9000.D


30S.MS9X.F.03.09


Features	Applications	
Extra small LCC20 packaging (8.9mm x 8.9mm)	Inertial sensing	IMU / AHRS for MilAerospace
±2g to ±200g Full Scale Range		Avionics
Excellent Bias stability		UAV
Harsh Environment (shock, vibration, temperature)		Land & Sea inertial navigation
MIL-STD-833-E qualified		Directional drilling
Low power analog voltage output		Geophysics
Brown out protected		Train control
		Tilt & Inclination

Description

Colibrys MS9000 inertial accelerometer is a new extra small product designed for harsh environment and safety critical applications. This generation of products comes in a LCC20 (8.9mm x 8.9mm) ceramic package and in a variety of g ranges from ±2g to ±200g. These sensors can operate over extended temperature ranges with just a few milli g bias stability guaranteed over extended lifetime

The Colibrys MS9000 accelerometer is a MEMS capacitive sensor, based upon a bulk micro-machined silicon element, a low power ASIC for signal conditioning, a micro-controller for storage of compensation values and a temperature sensor. The product is low power, calibrated, robust and stable and the electronic configuration provides a solid power on reset and ensures a full protection against brown-out.

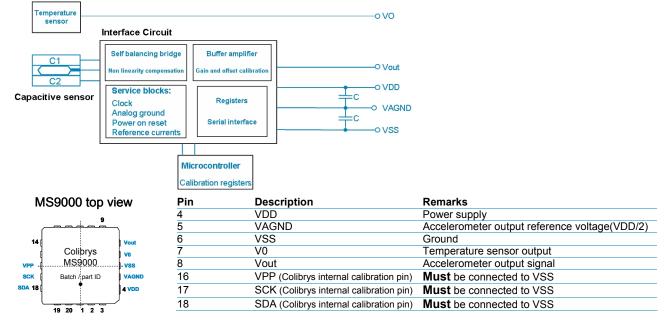
MS9000 side View MS9000 top view

Preliminary specifications All values are specified at +20°C (+86°F) and 5.0 VDC supply voltage, unless otherwise stated

	Units	MS9002.D	MS9010.D	MS9030.D	MS9050.D	MS9100.D	MS9200.D
Full scale range	g	± 2g	± 10g	± 30g	± 50g	± 100g	± 200g
Packaging		LCC20 (non magnetic, 8.9mm x 8.9mm / 0.35inch x 0.35inch)					
Bias calibration	mg	< 10	< 50	< 150	< 250	< 500	< 1000
One year bias stability [1]	mg typ. (max.)	0.3 (<1.5)	1.5 (<7.5)	4.5 (<22.5)	7.5 (<37.5)	15 (<75)	30 (<150)
Switch on/off repeatability	mg max.	< 0.15	< 0.75	< 1.5	< 3.8	< 7.5	< 15
Bias temp. coefficient [2]	mg/°C typ.	<0.1	<0.5	<1.5	<2.5	< 5	< 10
	mg/°C max.	± 0.4	± 2	± 6	± 10	± 20	± 40
Scale factor sensitivity (K1)	mV/g	1000 ± 8	200 ± 2	66.6 ± 1	40 ± 1	20 ± 1	10 ± 1
One year scale factor stability [1]	ppm typ. (max.)	150 (< 400)	150 (< 400)	150 (< 400)	150 (< 400)	150 (< 400)	150 (< 400)
Scale factor temp. coefficient [2]	ppm / °C typ.	100	100	100	100	100	100
	min. / max.	-50 / 250	-50 / 250	-50 / 250	-50 / 250	-50 / 250	-50 / 250
Input axis misalignment (Kp, Ko)	mrad max.	< 10	< 10	< 10	< 10	< 10	< 10
	% max	1	1	1	1	1	1
Resolution / Threshold (@ 1Hz)	mg max.	< 0.1	< 0.6	< 1.7	< 2.8	< 5.5	< 11
Non linearity	% of FS max.	< 0.8	< 0.9	< 0.9	< 0.9	< 1	< 1
	g max.	< 0.02	< 0.09	< 0.27	< 0.50	< 1	< 2
Bandwidth [3]	Hz	0 to ≥ 100	0 to ≥ 100	0 to ≥ 100	0 to ≥ 100	0 to ≥ 100	0 to ≥ 100
Noise spectral density in band	μV/√Hz typ.	18	18	18	18	18	18
[0 ; 9kHz)	max.	24	24	24	24	24	24
Resonant frequency	kHz	1.4	3.7	6.3	11	15	26

One year stability defined according to IEEE 528-2001: turn on / on, storage at -55°C and 85°C, -40°C to 125°C T cycling, -55°C to 85°C unpowered harass, vibration, shock. Temperature coefficients are specified for a range of -40°C to 20°C, where temperature behavior is typically linear. The bandwidth is defined as the frequency band for which the sensitivity has decreased by less than 3dB.

[2]: [3]:


Environmental	MS9002.D M	S9010.D	MS9030.D	MS9050.D	MS9100.D	MS9200.D
Operating temperature range	-55°C to +125°C (-67°F to 25	5°F)			
Reliability	Results based on I	MIL-HDBK-	217, notice 2, ar	e available on re	equest.	
Shock resistance	6'000 g (0.15ms ha	alf-sine peri	od, shocks in ea	ch direction o, p	o, i)	
Recovery time	< 1ms (1000g, hali	f-sine perio	d 1ms, shocks in	direction i)		
Vibration	20 g rms, 20-2000	Hz (rando	m noise, 30 minu	utes in each dire	ection o, p, i)	
LCC packaging	The product has b 5·10-8 atm·cm³/s	een qualifie	d according to N	IIL-STD-833-E H	Hermetic sealing	is qualified at
ESD sensitivity	Class 2 (requiren	nents MIL-S	TD-883-E, 1 Me	ethod 3015.7), H	IBM 2kV	
Proximity effect	The sensor is sens accelerometer size					
Note: LCC must be tightly fixed to the	ne PCB, using the botto	m of the ho	ousing as referen	ce plan for axis	alignment.	
Electrical	MS9002.D M	S9010.D	MS9030.D	MS9050.D	MS9100.D	MS9200.D
Input voltage (VDD – VSS)	2.5 to 5.5 VDC. Th	e standard	voltage for calib	ration is 5.0 VD	С.	
Output voltage range	From 0.5 to 4.5 VE	OC @ 5.0 V	DC input voltage	(2.5 V ± 10mV	' at 0g)	
Operating current consumption	< 400 μA @ 5.0 VI	C				
Initialization & reset current consumption	Typ. 1500 μA @ 5 temperature)	.0 VDC dur	ing the initializati	on phase (less t	than 35 ms at ro	om
Reset	The sensor is Brow +0.46 V with a slop typ. 25 ms (max 39	be >380V/s				
Output impedance / load	Min. 50 kΩ at Vou Max. 50 pF at Vou		,			
Physical	Hermetically sealed L	.CC, 20 pins	housing			
Weight	< 1.5 grams					
Size	Typ. 8.9 x 8.9 x 3.2 Max. 9.2 x 9.2 x 3.		(0.35 x 0.35 x 0. (0.354 x 0.354 x			
Temperature sensor:						
Output Voltage at 20°C	Tvp: 1.632 V					

Output Voltage at 20°C	Тур: 1.632 V
Sensitivity	Typ: -11.77 mV/°C
Long term stability	Max -0.03°C to +0.09°C (1000h @ 150°C)
Accuracy	± 5°C (From -40°C to 125°C)

Block diagram and electrical connections

It is necessary to use decoupling capacitors [C] of $1\mu F$ each between VDD and VAGND and between VAGND and VSS,

placed as close as possible from the accelerometer. COG or X7R @ 5% capacitor types are recommended.

A detailed MS9000 Product Description (30D.MS9X.x.xx.xx) and further Application Notes are available on demand or on our web site.

In order to provide an ideal support to our customers, our

swiss TS

standard MS9000 products will be available worldwide through a wide network of distributors and agents or directly at Colibrys. Do not hesitate to access our web site for precise contacts or contact directly Colibrys in Europe or in US for more details.

Colibrys (Switzerland) Ltd accelero.europe@colibrys.com

Colibrys reserves the right to change these data without notice.

www.colibrys.com