INTELLIGENT POWERMODULE, 3 PHASE-BRIDGE 500V/5A

DESCRIPTION

SD05M50D/S is a robust, highly-integrated 3-phase BLDC motor driver IC, for small power motor drive applications such as fan motors and water suppliers. It incorporates 6 fast-recovery MOSFET(FRFET) and 3 half-bridge HVIC for FRFET gate driving.

The SD05M50D/S offers an extremely compact isolated package for very simple design. It integrated of under-voltage lockout function and dV/dt immune, deliver high level of protection and fail-safe operation. Each phase current of inverter can be monitored separately due to divided negative dc terminals. The package is optimized for the thermal performance and compacted for the use in the built-in motor application and any other application where the assembly space is concerned.

FEATURES

- * 500V $R_{DS(on)}$ =1.4 Ω (max) 3-phase fast-recovery MOSFET inverter including high voltage integrated circuit(HVIC)
- * 3 divided negative dc-link terminals for inverter current sensing applications
- * HVIC for gate driving and under-voltage protection
- * 3/5V CMOS/TTL compatible, active-high interface
- * Optimized for low electromagnetic interference
- * Isolation voltage rating of 1500Vrms for 1min.

ORDERING INFORMATION

Part No.	Package	Marking	Material	Packing
SD05M50D	DIP-23	SD05M50D	Pb free	Tube
SD05M50S	SOP-23	SD05M50S	Pb free	Tube

APPLICATIONS

- * Air conditioner fan
- * Refrigerator compressor
- * Dishwasher pump

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Characteristics	Symbol	Ratings	Unit
DC Link Input Voltage, Drain-source Voltage of FRFET	V_{PN}	500	V
Each FRFET Drain Current, Continuous, T _C =25°C	I _{D25}	2.0	А
Each FRFET Drain Current, Continuous, T _C =80°C	I _{D80}	1.5	А
Each FRFET Drain Current, Peak, T _C =25°C, PW<100µs	I _{DP}	5	A
Maximum Power Dissipation, T_C =25°C	PD	14.5	W
Control Supply Voltage	Vcc	20	V
High-side Bias Voltage	V _{BS}	20	V
Input Signal Voltage	VIN	-0.3~V _{cc} +0.3	V
Operating Junction Temperature	ТJ	-40~150	°C
Storage Temperature Range	T _{STG}	-50~150	°C
Junction to Case Thermal Resistance	R _{ejc}	8.6	°C/W
Isolation Voltage			
60Hz, Sinusoidal, 1 minute,	Viso	1500	V _{rms}
Connection pins to heatsink			

RECOMMENDED OPRATING CONDITIONS

	Symbol	Value			
Characteristics		Min.	Тур.	Max.	Unit
Supply Voltage	V _{PN}		300	400	V
Control Supply Voltage	Vcc	13.5	15	16.5	V
High-side Bias Voltage	V _{BS}	13.5	15	16.5	V
Input ON Threshold Voltage	V _{IN(ON)}	3.0	-	VCC	V
Input OFF Threshold Voltage	VIN(OFF)	0	-	0.6	V
Blanking Time for Preventing Arm-short $V_{CC}=V_{BS}=13.5\sim16.5V$, TJ $\leq25^\circ$ C	T_{dead}	1.0	-	-	μs
PWM Switching Frequency	f _{PWM}	-	15	-	KHz

ELECTRICAL CHARACTERISTICS (Unless specified particularly T _{amb} =25°C, V _{CC} =V _{BS} =15V)						
Characteristics	Symbol	Test Conditions	Min	Tup	Mox	Unit
onal acteristics	Symbol	rest conditions		тур.	Wan.	Unit
Static Drain-Source	Provide)/1/15\/ \/5\/ 1 20		1.0	1 /	0
On-Resistance	RDS(on)	VCC-VBS-15V,VIN-5V,ID-1.2A	-	1.0	1.4	12
Drain-Source Diode	Vop	\/=\/=15\/ \/w=0\/ _=_1 2∆	_	_	12	V
Forward voltage	▼ SD	VCC-VBS-13V, VIN-0V, ID-1.2A	-	-	1.2	v

PIN CONFIGURATIONS

PIN DESCRIPTIONS

Pin No.	Pin Name	I/O	Description	
1	СОМ	I/O	IC Common Supply Ground	
2	VB(U)	I/O	Bias Voltage for U Phase High Side FRFET Driving	
3	Vcc(u)	I/O	Bias Voltage for U Phase IC and Low Side FRFET Driving	
4	IN(UH)	Ι	Signal Input for U Phase High-side	
5	IN(UL)	Ι	Signal Input for U Phase Low-side	
6	VS(U)	I/O	Bias Voltage Ground for U Phase High Side FRFET Driving	
7	VB(V)	I/O	Bias Voltage for V Phase High Side FRFET Driving	
8	Vcc(v)	I/O	Bias Voltage for V Phase IC and Low Side FRFET Driving	
9	IN(∨H)	Ι	Signal Input for V Phase High-side	
10	IN(VL)	Ι	Signal Input for V Phase Low-side	
11	Vs(v)	I/O	Bias Voltage Ground for V Phase High Side FRFET Driving	
12	VB(W)	I/O	Bias Voltage for W Phase High Side FRFET Driving	
13	Vcc(w)	I/O	Bias Voltage for W Phase IC and Low Side FRFET Driving	
14	IN(WH)	Ι	Signal Input for W Phase High-side	
15	IN(WL)	Ι	Signal Input for W Phase Low-side	
16	Vs(W)	I/O	Bias Voltage Ground for W Phase High Side FRFET Driving	
17	Р	I/O	Positive DC-Link Input	
18	U	0	Output for U Phase	
19	NU	1/0	Negative DC-Link Input for U Phase	
20	NV	1/0	Negative DC-Link Input for V Phase	
21	v	0	Output for V Phase	
22	NW	I/O	Negative DC–Link Input for W Phase	
23	w	0	Output for W Phase	

TYPICAL APPLICATION CIRCUIT

PACKAGE OUTLINE

MOS DEVICES OPERATE NOTES:

Electrostatic charges may exist in many things. Please take following preventive measures to prevent effectively the MOS electric circuit as a result of the damage which is caused by discharge:

- The operator must put on wrist strap which should be earthed to against electrostatic.
- Equipment cases should be earthed.
- All tools used during assembly, including soldering tools and solder baths, must be earthed.
- MOS devices should be packed in antistatic/conductive containers for transportation.

Disclaimer :

- Silan reserves the right to make changes to the information herein for the improvement of the design and performance without further notice! Customers should obtain the latest relevant information before placing orders and should verify that such information is complete and current.
- All semiconductor products malfunction or fail with some probability under special conditions. When using Silan products in system design or complete machine manufacturing, it is the responsibility of the buyer to comply with the safety standards strictly and take essential measures to avoid situations in which a malfunction or failure of such Silan products could cause loss of body injury or damage to property.
- Silan will supply the best possible product for customers!