DSPIC30F6011AT-20E/PF Datasheet

  • DSPIC30F6011AT-20E/PF

  • High Performance Digital Signal Controllers

  • 3527.50KB

  • 222页

  • MICROCHIP   MICROCHIP

扫码查看芯片数据手册

上传产品规格书

PDF预览

dsPIC30F6011/6012/6013/6014
2.0
2.1
CPU ARCHITECTURE
OVERVIEW
Core Overview
Overhead-free circular buffers (modulo addressing) are
supported in both X and Y address spaces. This is pri-
marily intended to remove the loop overhead for DSP
algorithms.
The X AGU also supports bit-reversed addressing on
destination effective addresses to greatly simplify input
or output data reordering for radix-2 FFT algorithms.
Refer to Section 4.0 for details on modulo and
bit-reversed addressing.
The core supports Inherent (no operand), Relative,
Literal, Memory Direct, Register Direct, Register
Indirect, Register Offset and Literal Offset Addressing
modes. Instructions are associated with predefined
Addressing modes, depending upon their functional
requirements.
For most instructions, the core is capable of executing
a data (or program data) memory read, a working reg-
ister (data) read, a data memory write and a program
(instruction) memory read per instruction cycle. As a
result, 3-operand instructions are supported, allowing
C = A+B operations to be executed in a single cycle.
A DSP engine has been included to significantly
enhance the core arithmetic capability and throughput.
It features a high speed 17-bit by 17-bit multiplier, a
40-bit ALU, two 40-bit saturating accumulators and a
40-bit bidirectional barrel shifter. Data in the accumula-
tor or any working register can be shifted up to 15 bits
right, or 16 bits left in a single cycle. The DSP instruc-
tions operate seamlessly with all other instructions and
have been designed for optimal real-time performance.
The
MAC
class of instructions can concurrently fetch
two data operands from memory while multiplying two
W registers. To enable this concurrent fetching of data
operands, the data space has been split for these
instructions and linear for all others. This has been
achieved in a transparent and flexible manner, by ded-
icating certain working registers to each address space
for the
MAC
class of instructions.
The core does not support a multi-stage instruction
pipeline. However, a single stage instruction pre-fetch
mechanism is used, which accesses and partially
decodes instructions a cycle ahead of execution, in
order to maximize available execution time. Most
instructions execute in a single cycle with certain
exceptions.
The core features a vectored exception processing
structure for traps and interrupts, with 62 independent
vectors. The exceptions consist of up to 8 traps (of
which 4 are reserved) and 54 interrupts. Each interrupt
is prioritized based on a user assigned priority between
1 and 7 (1 being the lowest priority and 7 being the
highest), in conjunction with a predetermined 鈥榥atural
order鈥? Traps have fixed priorities ranging from 8 to 15.
This section contains a brief overview of the CPU
architecture of the dsPIC30F. For additional hard-
ware and programming information, please refer to
the
dsPIC30F Family Reference Manual
and
the
dsPIC30F Programmer鈥檚 Reference Manual
respectively.
The core has a 24-bit instruction word. The Program
Counter (PC) is 23-bits wide with the Least Significant
(LS) bit always clear (refer to Section 3.1), and the
Most Significant (MS) bit is ignored during normal
program execution, except for certain specialized
instructions. Thus, the PC can address up to 4M
instruction words of user program space. An instruction
pre-fetch mechanism is used to help maintain through-
put. Program loop constructs, free from loop count
management overhead, are supported using the
DO
and
REPEAT
instructions, both of which are interrupt-
ible at any point.
The working register array consists of 16 x 16-bit regis-
ters, each of which can act as data, address or offset
registers. One working register (W15) operates as a
software stack pointer for interrupts and calls.
The data space is 64 Kbytes (32K words) and is split
into two blocks, referred to as X and Y data memory.
Each block has its own independent Address Genera-
tion Unit (AGU). Most instructions operate solely
through the X memory, AGU, which provides the
appearance of a single unified data space. The
Multiply-Accumulate (MAC) class of dual source DSP
instructions operate through both the X and Y AGUs,
splitting the data address space into two parts (see
Section 3.2). The X and Y data space boundary is
device specific and cannot be altered by the user. Each
data word consists of 2 bytes, and most instructions
can address data either as words or bytes.
There are two methods of accessing data stored in
program memory:
鈥?The upper 32 Kbytes of data space memory can
be mapped into the lower half (user space) of pro-
gram space at any 16K program word boundary,
defined by the 8-bit Program Space Visibility Page
(PSVPAG) register. This lets any instruction
access program space as if it were data space,
with a limitation that the access requires an addi-
tional cycle. Moreover, only the lower 16 bits of
each instruction word can be accessed using this
method.
鈥?Linear indirect access of 32K word pages within
program space is also possible using any working
register, via table read and write instructions.
Table read and write instructions can be used to
access all 24 bits of an instruction word.
铮?/div>
2004 Microchip Technology Inc.
Preliminary
DS70117C-page 13

DSPIC30F6011AT-20E/PF相关型号PDF文件下载

扫码下载APP,
一键连接广大的电子世界。

在线人工客服

买家服务:
卖家服务:

0571-85317607

客服在线时间周一至周五
9:00-17:30

关注官方微信号,
第一时间获取资讯。

建议反馈

联系人:

联系方式:

按住滑块,拖拽到最右边
>>
感谢您向阿库提出的宝贵意见,您的参与是维库提升服务的动力!意见一经采纳,将有感恩红包奉上哦!