利用微型端口扩展器控制LED的设计
出处:hedy007 发布于:2007-09-26 09:28:07
这些端口的输出可以用作LED驱动器,并可提供闪烁和PWM亮度控制功能。该系列产品将18个扩展端口集成在4mm2的薄型QFN封装内,而10端口扩展器则采用尺寸更小的3mm2薄型QFN封装。由于蜂窝电话、PDA、膝上型电脑需要将监视和控制功能集中在一个很小的区域内,设计人员没有足够的空间从主ASIC引出一簇I/O口线,因而只有引出两条线作为I2C总线,这就需要小尺寸、功耗极低的端口扩展芯片,而且要求这种芯片非常便宜,并具有极高的可靠性,同时还要易于使用。此外,还要占用极少的处理器资源。
1 设计需求
Maxim的设计工程师经过潜心研究,开发出了一系列的模块。由于每种器件都已针对具体的应用环境进行了优化,因此,这些器件在-40~+125℃的汽车级温度范围内可保持在1.2μA(典型值)和3.6μA(值)以内的静态电流。这些产品可工作在2V~+3.6V电源电压下,同时支持热插拔。所有器件引脚(电源引脚除外)在关断模式下保持高阻状态,能够承受至少6V的电压,无论芯片是否加电,I/O端口和串口都可以处在带电模式,因而非常适合热插拔应用。
2 PWM亮度控制
MAX6964-5、MAX7313-6系列产品包括LED亮度控制和闪烁控制,可驱动8至18个LED,芯片集成了240级脉宽调制(PWM)亮度控制电路,适用于RGB LED的驱动或白色LED的调光。每个端口都具有I/O能力,并具有可选的中断输出(INT),当检测到有跳变发生时,器件会发出中断信号。所有端口输出都可以吸收50mA电流,足以驱动绝大多数LED。对于更大电流的LED(如用于相机闪光灯的白色LED),可以通过并联端口驱动。任何端口均可设置为静态逻辑电平(如逻辑输出)或脉冲宽度调制(PWM)输出,从而方便地调节LED负载的平均电流(亮度)。
内部32kHz振荡器产生PWM时序,这样,PWM亮度控制可以按照各输出端口逐个使能,以提供任意组合的PWM LED驱动,而无故障逻辑输出。当没有I/O端口为LED提供PWM信号时,内部振荡器将自动关闭,这样可使工作电流降至。
PWM时序图如图1所示。PWM亮度控制采用4比特主控制位和4比特端口独立控制位,主控制位可提供16级全局亮度控制,并可作用在所有PWM使能的输出端口。主控制位通常将脉冲宽度设置为PWM周期的1/15至15/15,以限制所有PWM输出对应的亮度。独立设置位由每路输出的另外4比特码组成,调节范围为主控窗口的1/16~15/16。如果应用时,各输出端口需要相同的PWM设置,那么,可利用一个全局PWM来控制,这样,只需对一个寄存器进行写操作即可调节LED的亮度,调节级数为240,这样,可简化控制软件的设计。
3 LED闪烁控制
输出端口可以由芯片内的P0寄存器和P1寄存器交替控制,在两组输出端口寄存器中设置不同的显示模型,并通过软件或硬件控制输出端口可在两种不同显示模型间进行转换以实现闪烁功能。
Maxim推出的新型I/O端口扩展器是为那些需要额外增加I/O口的应用而设计的,这些通用器件能够为电路设计人员提供具有过压保护的逻辑输入端口或漏极开路逻辑输出端口,其过压额定值为5.5V或7V。
这些端口的输出可以用作LED驱动器,并可提供闪烁和PWM亮度控制功能。该系列产品将18个扩展端口集成在4mm2的薄型QFN封装内,而10端口扩展器则采用尺寸更小的3mm2薄型QFN封装。由于蜂窝电话、PDA、膝上型电脑需要将监视和控制功能集中在一个很小的区域内,设计人员没有足够的空间从主ASIC引出一簇I/O口线,因而只有引出两条线作为I2C总线,这就需要小尺寸、功耗极低的端口扩展芯片,而且要求这种芯片非常便宜,并具有极高的可靠性,同时还要易于使用。此外,还要占用极少的处理器资源。
版权与免责声明
凡本网注明“出处:维库电子市场网”的所有作品,版权均属于维库电子市场网,转载请必须注明维库电子市场网,https://www.dzsc.com,违反者本网将追究相关法律责任。
本网转载并注明自其它出处的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品出处,并自负版权等法律责任。
如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
- LED显示屏标清、高清、超清、1080P与4K的解析2025/8/8 17:05:00
- 德州仪器环境光传感器:拓展功能实现精准光检测2025/8/7 16:25:55
- LED背光 vs. CCFL背光:原理、特点及对比2025/8/5 16:49:19
- OLED屏的烧屏问题及解决方法2025/8/4 16:54:27
- LCD 高清平板时代:偏压供电电路设计面临的挑战2025/8/2 10:34:20