一种单级不对称半桥变换器的设计和实现

出处:互联网 发布于:2011-08-26 18:48:53

 
  PFC的英文全称为"Power Factor Correction",意思是"功率因数校正",功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。 基本上功率因素可以衡量电力被有效利用的程度,当功率因素值越大,代表其电力利用率越高。计算机开关电源是一种电容输入型电路,其电流和电压之间的相位差会造成交换功率的损失,此时便需要PFC电路提高功率因数。目前的PFC有两种,一种为被动式PFC(也称无源PFC)和主动式PFC(也称有源式PFC)。因此,目前对单级PFC的研究也成为重要的课题之一。单级PFC中电源控制器的作用是保证快速、稳定的输出,对于输入功率因数的要求则需功率级自身解决。适合单级隔离式PFC的结构有很多,但基于不对称半桥的单级PFC具有独特的特点,下面将对该变换器的工作原理作详尽的分析。
 
 
  1 单级不对称半桥工作原理
 
 
 
  不对称半桥是一种适用于中低功率的DC/DC零电压开关(ZVS)变换器电路。该电路采用固定死区的互补PWM控制方式,不需要外加元件,充分利用电路本身的分布特性,通过变压器漏感和开关寄生电容的谐振,实现零电压开关。这种电路保持了PWM开关模式的低开关导通损耗,而且消除了开关的导通损耗,因此,可以得到很高的效率。
 
 
 
 
 
  图1中Vg是整流后的电压,Lb是Boost电感,Ca是储能电容,S1及S2为互补控制的MOS管,Ds1,Cs1,Cs2,Ca2分别为S1、S2的寄生二极管、寄生电容。Lr为谐振电感包括变压器漏感,Lm是励磁电感,Np,Ns变压器原副边匝数,副边接全波整流二极管D1及D2,输出滤波电感Lf,电容Co,负载RL.
 
 
  其工作的理论相关波形如图2所示,其中Vgs是S1及S2的驱动波形,Vds1、Vds2分别是S1及S2漏源极电压波形,jp为变压器原边电流波形,iLb为电感Lb电流波形,其工作过程可分为9个模式。模式1[to~t1]如图3(a)所示,to时刻S1开通,Vg通过S1对Lb充能;同时储能电容ca通过S1.对Lr及Gb充能,并通过变压器向负载提供能量。这个过程直到t1时刻S1关断为止。
 
 
 
  模式2[t1~t2]如图3(b)所示,t1时刻S1关断。Vg通过Cs1继续向Lb充能,Cs1两端电压(Vds1)持续上升,Cs2两端电压(Vds2)持续下降。Ca也继续通过变压器向负载释放能量,这个过程直到t2时刻Cs2两端的电压下降到等于Ch两端的电压Vcb结束。
 
 
  模式3[t2~t3]如图3(c)所示,当Cs2两端的电压下降到等于Cb两端的电压Vcb时,副边进入续流状态,V通过Cs1一继续向Lb充能。Lr,Cs1,Cs2进行谐振,导致Cs1两端电压继续上升,Cs2两端电压继续下降,直到t3时刻Cs2两端的电压下降为零,同时Cs1两端的电压上升到等于Ca两端的电压Vca时结束。
 
 
  模式4[t3~t5] 如图3(d)所示,当Cs2两端的电压下降为零时,谐振电感继续通过Ds2释放能量,在这个时间段的t4时刻开通S2,此时S2实现零电压开通。谐振电感通过S2将能量完全释放,电感Lb通过二极管Ds2向Ca充电。
 
 
 
 
 
  模式5[t3~t6]如图3(e)所示,t5时刻谐振电感能量完全释放,隔直电容对Lr反向充能,直到变压器原副边电压等于匝数比后同时向负载释放能量,Lh能量完全释放,此过程结束。
 
 
  模式6[ts~t7]如图3(f)所示,Lh能量完全释放后,隔直电容Ch继续向负载释放能量,直到t7时刻S2关断结束。
  模式7[f7~t8]如图3(g)所示,S2关断,Cs2两端电压(Vds2)持续上升,Cs1两端电压(Vds1)持续下降,直到ts时刻CS2两端的电压上升到等于Cb两端的电压Vcb时结束。
 
 
  模式8[t8~t9] 如图3(h)所示,Cs2两端的电压上升到等于Cb两端的电压Vcb副边进入续流状态,Lr,Cs1,Cs2再次谐振,使得Cs2两端电压继续上升,Cs1两端电压继续F降,直到t9时刻Cs1两端的电压下降为零,同时Cs2两端的电压上升到等于Ca两端的电压Vca时结束。
 
 
  模式9[t9~t11] 如图3(i)所示,t9时刻Cs1两端的电压下降为零,Lr继续通过Ds1释放能量,在这个时间段的t10时刻开通S1,此时S1实现零电压开通。谐振电感通过S1将能量完全释放,且Ca对Lr反向充能,直到t11时刻变压器原副边电压等于匝数比,回到初始状态。
 
 
  从以上分析町以看到,电感Lr工作在DCM状态,电流自动跟踪电压,从而达到PFC的目的,同时也实现了开关管的ZVS.
 
  2 主要参数选择
 
 
  在本文所提到的电路中,变压器采用带中心抽头的对称绕组,则
 
 
 
  由不对称半桥输出电感的磁平衡可得到输出电压为
 
 
 
  根据式(2)以及输入电压、输出电压和占空比可确定变压器匝数比。工作在DCM状态的Boost型PFC电路从电网中吸收的能量可表示为
 
 
 
 
  式中:Vo为输出电压; Io为输出电流; η为变换效率; Vg为输入电压幅值; D为占空比; T为开关周期。由于谐振电感所储存的能量大于寄生电容所储存的能量是实现ZVS的条件,所以,可得谐振电感为
 
 
 
 
 
     式中: 等苦为MOS管寄生电容。
 
 
    3 实验结果
 
 
    根据以上的分析,设计了一个输入电压110 V,输出电压18 V,输出电流5A,频率为100kHz的电路。原边开关选用4N60,功率变压选用EE33,Np=24,Ns=6,谐振电感Lr=10μH,Boost电感Lh=100μH。实验所得波形如图4所示,从图4中可以看到,电路即实现了功率因数校正,也实现了S1及S2的ZVS。
 
 
 
 
 
  4 结语
 
 
  单级PFC AC/DC变换器比两级变换器具有成本低,结构简单的优势,特别是在小功率的应用中。不对称半桥由于它内在的ZVS特性,能有效地降低开关损耗,将这种特性运用到AC/DC变换器中能提高它的效率。单级不对称半桥能够较好地实现功率因数校正和软开关。
 
 
 

  
关键词:变换器

版权与免责声明

凡本网注明“出处:维库电子市场网”的所有作品,版权均属于维库电子市场网,转载请必须注明维库电子市场网,https://www.dzsc.com,违反者本网将追究相关法律责任。

本网转载并注明自其它出处的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品出处,并自负版权等法律责任。

如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。

上传BOM文件: BOM文件
*公司名:
*联系人:
*手机号码:
QQ:
应用领域:

有效期:
OEM清单文件: OEM清单文件
*公司名:
*联系人:
*手机号码:
QQ:
有效期:

扫码下载APP,
一键连接广大的电子世界。

在线人工客服

买家服务:
卖家服务:

0571-85317607

客服在线时间周一至周五
9:00-17:30

关注官方微信号,
第一时间获取资讯。

建议反馈

联系人:

联系方式:

按住滑块,拖拽到最右边
>>
感谢您向阿库提出的宝贵意见,您的参与是维库提升服务的动力!意见一经采纳,将有感恩红包奉上哦!