GPS同步时钟系统在电力系统中的时间同步设计

出处:fhili 发布于:2011-08-31 16:09:44

  近年来,我国电力系统的规模日益扩大,电网结构和运行方式日益复杂。我国电力系统的发展对其安全稳定运行提出了更高的要求。由于世界范围内电力系统突发事故的相继出现,现行的基于分布时间基准的监控方式受到了置疑。因此,寻找功能更为强大、原理更为先进的电力系统时间同步服务系统是十分必要的。

  使用价格并不昂贵的GPS同步时钟来统一全厂各种系统的时钟,已是目前火电厂设计中采用的标准做法。电厂内的机组分散控制系统(DCS)、辅助系统可编程控制器(PLC)、厂级监控信息系统(SIS)、电厂管理信息系统(MIS)等的主时钟通过合适的GPS同步时钟信号接口,得到标准的TOD(年月日时分秒)时间,然后按各自的时钟同步机制,将系统内的从时钟偏差限定在足够小的范围内,从而达到全厂的时钟同步。

  一、GPS同步时钟系统及输出

  1.1 GPS同步时钟系统

  GPS 是英文Global Positioning System(定位系统)的简称,而其中文简称为“球位系”。GPS是20世纪70年代由美国陆海空三军联合研制的新一代空间卫星导航定位系统 。其主要目的是为陆、海、空三大领域提供实时、 全天候和性的导航服务,并用于情报收集、核爆监测和应急通讯等一些军事目的经过20余年的研究实验,耗资300亿美元,到1994年3月,覆盖率高达98%的24颗GPS卫星星座己布设完成。在机械领域GPS则有另外一种含义:产品几何技术规范(Geometrical Product Specifications)-简称GPS。另外一种解释为G/s(GB per s)

  GPS同步时钟也是基于型GPS高定位授时模块开发的基础型授时应用产品。能够按照用户需求输出符合规约的时间信息格式,从而完成同步授时服务。 GPS同步时钟主要由以下几部分组成:GPS/GNSS接收机,其中可以为GPS/GLONASS/BD/GALILEO等,高OCXO或铷钟,本地同步校准单元,测差单元,误差处理及控制结构,输入输出等几部分。

  作为火电厂的标准时钟,我们对GPS同步时钟的基本要求是:至少能同时跟踪8颗卫星,有尽可能短的冷、热启动时间,配有后备电池,有高、可灵活配置的时钟输出信号。

  1.2 GPS同步时钟系统信号输出

  1.2.1 1PPS/1PPM输出

  此格式时间信号每秒或每分时输出一个脉冲。显然,时钟脉冲输出不含具体时间信息。

  1.2.2 IRIG-B输出

  IRIG(Inter-Range Instrumentation Group 靶场仪器组)是美国RCC(Range Commanders Council靶场司令委员会)下属机构,成立于1951年8月,其常设机构在美国白沙导弹靶场。标准时间码可以用来与时统总站对时,校正时间,也可以通过时间码对时统设备授时。其所制定的IRIG标准,成为国际通用标准。它所制定的标准时间码格式有两大类,一类是并行时间码格式,另一类是串行时间码格式。1960年,IRIG通信组发表了新的串行时间码标准,即IRIG文件104-60。该文件规定了A、B、C、D、E五种时间码。1970年又增加了G和H两个新格式,并取消了C格式。其中,B格式时间码由于时帧周期为1秒,适合人们的需求,得到了广泛的应用,绝大多数场合使用的IRIG时间码都是B格式码,也就是IRIG-B码。

  1.2.3 RS-232/RS-422/RS-485输出

  此时钟输出通过EIA标准串行接口发送一串以ASCII码表示的日期和时间报文,每秒输出。时间报文中可插入奇偶校验、时钟状态、诊断信息等。此输出目前无标准格式,

  1.3 电力自动化系统GPS同步时钟系统的应用

  电力自动化系统内有众多需与GPS同步时钟同步的系统或装置,如DCS、PLC、NCS、SIS、MIS、RTU、故障录波器、微机保护装置等。在确定GPS同步时钟时应注意以下几点:(1)这些系统分属热控、电气、系统,如决定由DCS厂商提供的GPS同步时钟实现时间同步(目前通常做法),则在DCS合同谈判前,就应进行间的配合,确定时钟信号接口的要求。(GPS同步时钟一般可配置不同数量、型式的输出模块,如事先无法确定有关要求,则相应合同条款应留有可调整的余地。)

  (2)各系统是否共用一套GPS同步时钟装置,应根据系统时钟接口配合的难易程度、系统所在地理位置等综合考虑。各如对GPS同步时钟信号接口型式或要求相差较大时,可各自配置GPS同步时钟,这样一可减少间的相互牵制,二可使各系统时钟同步方案更易实现。另外,当系统之间相距较远 (例如化水处理车间、脱硫车间远离集控楼)时,为减少时钟信号长距离传送时所受的电磁干扰,也可就地单设GPS同步时钟。分设GPS同步时钟也有利于减小时钟故障所造成的影响。

  (3)IRIG-B码可靠性高、接口规范,如时钟同步接口可选时,可优先采用。但要注意的是,IRIG-B只是B类编码的总称,具体按编码是否调制、有无CF和SBS等又分成多种(如IRIG-B000等),故时钟接收侧应配置相应的解码卡,否则无法达到准确的时钟同步。

  (4)1PPS/1PPM脉冲并不传送TOD信息,但其同步较高,故常用于SOE模件的时钟同步。RS-232时间输出虽然使用得较多,但因无标准格式,设计中应特别注意确认时钟信号授、受双方时钟报文格式能否达成一致。

  (5)火电厂内的控制和信息系统虽已互连,但因各系统的时钟同步协议可能不尽相同,故仍需分别接入GPS同步时钟信号。即使是通过网桥相连的机组DCS和公用DCS,如果时钟同步信号在网络中有较大的时延,也应考虑分别各自与GPS同步时钟同步。

  二、西门子TELEPERMXP时钟同步方式

  这里以西门子公司的TXP系统为例,看一下DCS内部及时钟是如何同步的。

  TXP的电厂总线是以CSMA/CD为基础的以太网,在总线上有二个主时钟:实时发送器(RTT)和一块AS620和CP1430通讯/时钟卡。正常情况下,RTT作为TXP系统的主时钟,当其故约40s后,作为备用时钟的CP1430将自动予以替代(实际上在ES680上可组态2 块)CP1430作为后备主时钟)。

  RTT(Round-Trip Time): 往返时延。在计算机网络中它是一个重要的性能指标,表示从发送端发送数据开始,到发送端收到来自接收端的确认(接收端收到数据后便立即发送确认),总共经历的时延。

  目前,电厂用到的GPS同步时钟输出信号主要有以下三种类型:

  RTT可自由运行(free running),也可与外部GPS同步时钟通过TTY接口(20mA电流回路)同步。与GPS同步时钟的同步有串行报文(长32字节、9600波特、1个启动位、8个数据位、2个停止位)和秒/分脉冲二种方式。

  RTT在网络层生成并发送主时钟对时报文,每隔10s向电厂总线发送。RTT发送时间报文多等待1ms。如在1ms之内无法将报文发到总线上,则取消本次时间报文的发送:如报文发送过程被中断,则立即生成一个当前时间的报文。时钟报文具有一个多播地址和特殊帧头,日期为从 1984.01.01至当天的天数,时间为从当天00:00:00,000h至当前的ms值,分辨率为10ms。

  OM650从电厂总线上获取时间报文。在OM650内,使用Unix功能将时间传送给终端总线上的SU、OT等。通常由一个PU作为时间服务器,其他OM650设备登录为是境客户。

  AS620的AP在启动后,通过调用“同步”功能块,自动与CP1430实现时钟同步。然后CP1430每隔6s与AP对时。

  TXP时钟的如下:

  从上述TXP时钟同步方式及时钟可以看出,TXP系统内各进钟采用的是主从分级同步方式,即下级时钟与上级时钟同步,越是上的时钟其越高。

  三、GPS同步时钟系统及时钟同步误差

  3.1 时钟误差

  众所周知,计算机的时钟一般都采用石英晶体振荡器晶振体连续产生一定频率的时钟脉冲,计数器则对这些脉冲进行累计得到时间值。由于时钟振荡器的脉冲受环境温度、匀载电容、激励电平以及晶体老化等多种不稳定性因素的影响,故时钟本身不可避免地存在着误差。例如,某为±20ppm的时钟,其每小时的误差为:(1×60×60×1000ms)×(20/10.6)=72ms,一天的累计误差可达1.73s;若其工作的环境温度从额定25℃变为 45℃,则还会增加±25ppm的额外误差。可见,DCS中的时钟若不经定期同步校准,其自由运行一段时间后的误差可达到系统应用所无法忍受的程度。

  随着晶振制造技术的发展,目前在要求高时钟的应用中,已有各种高稳定性晶振体可供选用,如TCXO(温度补偿晶振)、VCXO(压控晶振)、OCXO(恒温晶振)等。

  3.2 GPS同步时钟系统同步误差

  如果对类似于TXP的时钟同步方式进行分析,不难发现时钟在自上而下的同步过程中产生的DCS的对时误差可由以下三部分组成:

  3.2.1 GPS同步时钟与卫星发射的UTC(世界协调时)的误差

  这部分的误差由GPS同步时钟的所决定。对1PPS输出,以脉冲前沿为准时沿,一般在几十ns至1μs之间;对IRIG-B码和RS- 232串行输出,如以中科院国家授时中心的地钟产品为例,其同步以参考码元前沿或起始相对于1PPS前沿的偏差计,分别达0.3μs和0.2ms。

  3.2.2 DCS主时钟与GPS同步时钟的同步误差

  DCS网络上的主时钟与GPS时钟通过“硬接线”方式进行同步。一般通过DCS某站点内的时钟同步卡接受GPS时钟输出的标准时间编码、硬件。例如,如在接受端对RS-232输出的ASCII码字节的发送延迟进行补偿,或对IRIG-B编码采用码元载波周期计数或高频销相的解码卡,则主时钟与GPS时钟的同步可达很高的。

  3.2.3 DCS各站点主从时钟的同步误差

  DCS主时钟与各站点从时钟通过网络进行同步,其间存在着时钟报文的发送时延、传播时延、处理时延。表现在:(1)在主时钟端生成和发送时间报文时,内核协议处理、操作系统对同步请求的调用开销、将时间报文送至网络通信接口的时间等;(2)在时间报文上网之前,还必须等待网络空闲(对以太网),遇冲突还要重发;(3)时间报文上网后,需一定时间通过DCS网络媒介从主时钟端传送到子时钟端(电磁波在光纤中的传播速度为2/3光速,对DCS局域网而言,传播时延为几百ns,可忽略不计);(4)在从时钟端的网络通信接口确认是时间报文后,接受报文、记录报文到达时间、发出中断请求、计算并校正从时钟等也需要时间。这些时延或多或少地造成了DCS主从时钟之间、从从时钟之间的时间同步误差。

  当然,不同网络类型的DCS、不同的时钟通信协议和同步算法,可使网络对时的同步各不相同,上述分析只是基于一般原理上探讨。事实上,随着人们对网络时钟同步技术的不懈研究,多种复杂但又高效、高的时钟同步协议和算法相继出现并得到实际应用。例如,互联网上广为采用的网络时间协议 (Network Time Protocol,NTP)在DCS局域网上已能提供±1ms的对时(如GE的ICS分散控制系统),而基于IEEE1588的标准时间协议 (Standard Precision Time Protocol,PTP)能使实时控制以太网上的主、从时钟进行亚微秒级同步。

  四、GPS同步时钟系统与SOE设计

  虽然DCS的普通开关量扫描速率已达1ms,但为满足SOE分辨率≤1ms的要求,很长一段时间内,人们都一直都遵循这样的设计方法,即将所有 SOE点置于一个控制器之下,将事件触发开关量信号以硬接线接入SOE模件,其原因就在于不同控制器其时钟存在着一定的误差。关于这一点,西门子在描述其 TXP系统的FUN B模件分散配置的工程实际情况来看,由于时钟不能同步而无法做到1ms SOE分辩率,更有甚至因时钟相差近百ms,造成SOE事件记录顺序的颠倒。

  那么,如何既能满足工程对于SOE分散设计的要求(如设置了公用DCS后,机组SOE与公用系SOE应分开,或希望进入控制器的MFT、ETS 的跳闸信号无需经输出再返至SOE模件就能用于SOE等),又不过分降低SOE分辨率呢?通过对DCS产品的分析不难发现,通常采用的办法就是将控制器或 SOE模件的时钟直接与外部GPS同步时钟信号同步。例如,在ABB Symphony中,SOEServerNode(一般设在公用DCS网上)的守时主模件(INTKM01)接受IRIG-B时间编码,并将其产生的 RS-485时钟同步信号链接到各控制器(HCU)的SOE时间同步模件(LPD250A),其板载硬件计时器时钟可外接1PPM同步脉冲,每分钟自动清零;再如,MAX1000+PLUS的分散处理单元(DPU 4E)可与IRIG-B同步,使DPU的DI点可同时用做SOE,由于采用了1PPM或RS-485、IRIG-B硬接线时钟“外同步”,避开了DCS时钟经网络同步目前还较差的问题,使各受控时钟之间的偏差保持在较小的范围内,故SOE点分散设计是可行的。

  由此可见,在工程设计中应结合采用的DCS特点来确定SOE的设计方案。不可将1ms的开关量扫描速率或1ms的控制器(或SOE模件)时钟相对误差等同于1ms的SOE分辨率,从而简单地将SOE点分散到系统各处。同时也应看到,SOE点“分散”同“集中”相比,虽然分辨率有所降低,但只要时钟相对误差很小(如与1ms关一个数量级),还是完满足电厂事故分析实际需要的。

  五、结束语

  5.1 目前火电厂各控制系统已不再是各自独立的信息孤岛,大量的实时数据需在不同地方打上时戳,然后送至SIS、MIS,用于各种应用中。因此,在设计中应仔细考虑各种系统的时钟同步方案和需达到的时钟同步。

  5.2 在DCS设计中不仅要注意了解系统主、从时钟的对时,更应重视时钟之间的相对误差。因为如要将SOE点分散设计的同时又不过分降低事件分辨率,其关键就在于各时钟的偏差应尽可能小。

  5.3 完全有理由相信,随着网络时钟同步技术的不断发展,通过网络对系统各时钟进行高的同步将变得十分平常。今后电厂各系统的对时准确性将大大提高,像SOE点分散设计这种基于高度GPS同步时钟系统的应用将会不断出现。



  

关键词:GPS同步时钟系统在电力系统中的时间同步设计同步时钟

版权与免责声明

凡本网注明“出处:维库电子市场网”的所有作品,版权均属于维库电子市场网,转载请必须注明维库电子市场网,https://www.dzsc.com,违反者本网将追究相关法律责任。

本网转载并注明自其它出处的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品出处,并自负版权等法律责任。

如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。

广告
OEM清单文件: OEM清单文件
*公司名:
*联系人:
*手机号码:
QQ:
有效期:

扫码下载APP,
一键连接广大的电子世界。

在线人工客服

买家服务:
卖家服务:
技术客服:

0571-85317607

网站技术支持

13606545031

客服在线时间周一至周五
9:00-17:30

关注官方微信号,
第一时间获取资讯。

建议反馈

联系人:

联系方式:

按住滑块,拖拽到最右边
>>
感谢您向阿库提出的宝贵意见,您的参与是维库提升服务的动力!意见一经采纳,将有感恩红包奉上哦!