基于DSP和USB的三维感应测井数据采集系统

出处:胡洪军 发布于:2012-09-07 15:22:26

  引 言

  数据采集是DSP基本的应用领域,本文设计的数据采集系统利用TI公司的TMS320F2812 DSP芯片。该芯片的主要特点有:150 MI/s(百万条指令/秒)的执行速度使得指令周期减小到6.67ns,从而提高了控制器的实时控制能力;采用哈佛总线结构,具有高性能的32位的CPU,在一个周期内能够实现32位×32位或两个16位×16位的乘法累加操作,具有快速中断响应与处理能力;TMS320F2812应用大量外设接口简化了电路设计;提供了足够的处理能力,使一些复杂的实时控制算法的应用成为可能。

  USB是现在应用广泛的一种高速通用串行总线协议。本文利用Philips公司的PDIUSBD12芯片。将USB协议应用于以DSP为的嵌入式系统,可以大大提高DSP系统与计算机的通信能力,从而拓宽DSP的应用范围。本文利用DSP和USB设计的数据采集系统,符合三维感应测井多通道数据采集的需要。

  数字采集系统设计

  数据采集系统的结构框图如图1所示,主要包括DSP、前置放大电路、信号调理电路、USB通讯接口,由于三维感应测井有3个Z轴向接收线圈和7组三分量接收线圈构成,所以采用了7组多路开关。在一个数据采集系统中,A/D转换器是采集系统的。在基于TMS320F2812的数据采集系统中,选用了芯片嵌入式的ADC模块。

图1 三维感应测井数据采集系统结构框图

  图1 三维感应测井数据采集系统结构框图

  信号调理电路

  由于本采集系统用于三维感应测井中,它对信号采集的要求高,因为被采信号频率较高,采样通道多,所以结果分析对原始数据的依赖性强。本设计信号调理电路分为前置放大器、带通滤波器、程控增益放大器、陷波器四部分。

  前置放大器设计

  前置放大器的噪声系数对整个采集系统的噪声特性具有重要的影响。因为它所产生的噪声会被后续各级放大器逐级放大,所以在选择放大器时低噪声指标非常重要。在研制低噪声放大器时,应该抓住低噪声这个关键指标来分析、计算并设计电路。目前,可用噪声指标比较好的集成电路来设计低噪声放大电路。

  由于测井时被采信号一般为微伏级,因此本设计采用INA128仪用差分放大器,它的输入失调电压为50μV,温度系数为0.5μV/℃,输入失调电流为5nA,同时还有很宽的电源电压范围,可以在±2.25V到±18V的供电电压范围内稳定工作。电压增益可以通过外接电阻改变,在1脚和8脚之间外接不同的电阻R,电压增益可以在0-10000的范围内变化,其计算公式为。当电压增益大于100时,INA128的输入共模抑制比达到120dB,对输入信号的共模干扰起到了很好的抑制作用。

  用MAX267 设计带通滤波器

  在三维感应测井中所设定的有用信号的带宽为20kHz到250kHz,因此选用MAX267设计一种带通增益放大器。MAX267内部含有2个独立的二阶开关电容带通滤波器,它有12个可编程输入端,其中F0~F4为滤波器中心频率设置输入端,分别接低电平或高电平,可以将中心频率设置为时钟频率的1/10,另外Q0~Q6为品质因数设置输入端,分别接低电平或高电平,可以在0.5~64 之间设置滤波器的品质因数。因此,不需要外加任何元件,而仅需外部时钟就可以实现带通滤波功能,使用极为方便。带通特性曲线如图2所示。

图2 带通特性曲线

  图2 带通特性曲线

  其传递函数 G(S)为:

  在上式中,HOPB是ω=ω0时的输出带宽值,且ω0 =2πf.

  fL和fH分别为:

  其中

  程控增益放大器设计

  程控放大器是在DSP的控制下,将初级放大的信号放大到ADC的转化区间内,以提高仪器的动态范围和灵敏度。考虑到器件的低频噪声特性和提高共模抑制比等因素,选择了PGA204、PGA205组合,其共模抑制可达120dB.本设计采用了两级程控反向差分的方法,并且两级程控放大采用直接耦合差动连接的方式。原理如图3示。

图3 两级程控放大级联原理图

  图3 两级程控放大级联原理图

  其中两个级联的级程控差分放大器由两片PGA205实现,两片PGA205的输出分别作为PGA204的正负输入端,于是就构成了第二级程控差分放大器。PGA204的可控放大倍数为1,10,100,1000;PGA205的可控放大倍数为1,2,4,8.所以,级联后程控放大部分的可控放大倍数可有16种组合方式。

  陷波器设计

  50Hz的工频干扰是数据采集系统中不可避免的,它会严重影响到前方和主放的稳定性。所以此处利用高性能器件MC33171构成50Hz陷波器,MC33171具有宽频带和较高的转换速率。图4为基于MC33171的50Hz陷波器电路,在图示的元件数值下,通过改变两个电阻R的值和一个电容C的值,可获得陷波频率,其数值为:f=1/4πRC.取R=16K,C=0.1μF可得陷波频率为50Hz.

图4 陷波器电路

  图4 陷波器电路

  A/D采样设计

  TMS320F2812的ADC模块

  TMS320F2812芯片中集成了一个12位A/D转换模块。为了满足系统多传感器的需求,F2812的A/D转换模块有16个通道,可配置为两个8通道模块,这样就形成了两个A/D转换器。在内部逻辑的控制下,用户可同时启动这两个或是其中某一个A/D转换模块。

  F2812的ADC模块是嵌入式的,它与传统的A/D相比具有以下特点:A/D模块的硬件资源配置好了之后,用户可以用软件指令随时启动A/D采样,并获得A/D转换的结果。同传统A/D不同的是,采集功能单元的硬件资源配置还有一部分是通过软件完成的。

  在TMS320F2812芯片中,A/D转换单元的模拟电路包括前向模拟多路开关(MUX)、采样/保持(S/H)电路、A/D转换内核以及其他模拟辅助电路。A/D转换单元的数字电路包括可编程转换序列器、结果寄存器、与模拟电路的接口等。图5为ADC模块的构成框图。

图5 ADC模块构成框图

  图5 ADC模块构成框图

  ADC模块功能包括:

  1)内置双采样/保持(S/H)的12位A/D转换模块,模拟输入为0-3V.

  2)同时或顺序采样模式。

  3)快速转换时间,可运行在25MHz的数模转换时钟或12.5MSPS.

  4)多输入通道达16通道。

  5)自动排序能力。可执行多达16通道的“自动抓换”.

  6)两个独立的可选择8个模拟通道的排序器(SEQ1和SEQ2)可独立工作于双排序器模式,或级联后工作在可选择16个模拟转换通道的排序器模式。

  7)可分别访问的16个结果寄存器用来保存转换结果。

  输入模拟电压转换为数字值可由下式得到:

  其中,ADCLO是A/D转换低电压参考值。

  8)使用多个触发信号启动数模转换(SOC),比如:

  S/W:软件立即启动。

  EVA:时间管理器EVA(在EVA中有多个时间源可以启动转换)。

  EVB:时间管理器EVA(在EVB中有多个时间源可以启动转换)。

  9)在双排序模式下,EVA和EVB触发器可各自独立的出发SEQ1和SEQ2.

  10)中断控制方式灵活,可在每次转换结束或每隔转换结束发出中断。

  数据采集系统A/D采样设计

  本系统信号输入设计为24路。DSP本身的A/D输入通道是16路,所以要外接多路模拟转换器进行扩展。在电路设计中,使用3条DSP的A/D输入通道ADCINA0- ADCINA2,每一通道挂接一片8输入1输出多路模拟转换器4051,这样就可以扩展为24路模拟信号输入。为了减小信号通道之间切换带来的串扰,需在通道切换后加放大器减小信号输入阻抗,为了减小A/D转换产生的误差,用两路己知信号电平输入引入信号参考,提高采集。

 图6展示了TMS320F2812内嵌的A/D转换模块与输入信号之间的接口。

图6 A/D模块与信号接口

  图6 A/D模块与信号接口

  对于每一个转换,CONVxx位确定采样和转换的外部模拟量引脚。使用顺序采样模式时,CONVxx的4位都用来确定输入引脚,位确定采用哪个采样并保持缓冲器,其他3位定义偏移量。例如,如果CONVxx的值是0001b,ADCINA1就被选为输入引脚。如果CONVxx的值是1111b,ADCINB7被选为输入引脚 .

  TMS320F2812 ADC的校正

  理想情况下,F2812的ADC模块转换方程为y =x ? mi,x=输入电压×4095/3,y为输出计数值。在实际中,ADC的误差不可避免,定义有增益误差和失调误差的转换方程为y=x ? ma±b,式中ma为实际增益,b为失调误差。F2812的ADC理想状态与实际转换较差的主要原因是存在增益误差和失调误差,因此必须对这两种误差进行补偿。校正方法如下:选用ADC的任意两个通道作为参考输入通道,分别提供给它们已知的直流参考电压作为输入(两个电压不能相同),通过读取相应的结果寄存器获取转换值,求得校正增益和校正失调,再利用这两个值对其他通道的转换数据进行补偿,从而提高了ADC模块转换的精准度。图7显示了如何利用方程获取ADC的校正增益和校正失调。

 图7 理想转换与实际ADC转换

  图7 理想转换与实际ADC转换

  TMS320F2812与PDIUSBD12接口设计

  TMS320F2812与PDIUSBD12之间采用并口连接方式,并且都工作在3V电压下,给PDIUSBD12分配一个片选,可以通过读写地址对其进行操作,它们之间的电气连接不需要特殊处理,按照管脚功能一一对应连接即可。图8是TMS320F2812与PDIUSBD12的硬件连接图。

图8 TMS320F2812与PDIUSBD12的硬件连接图

  图8 TMS320F2812与PDIUSBD12的硬件连接图

  系统软件设计

  该数据采集系统可以通过USB接口直接与PC机相连,在CCS集成开发环境下通过JTAG接口来调试、烧写程序,可使用C语言来实现。

  主程序流程

  图9是系统主程序流程图。在系统上电之后,先对DSP的时钟等系统参数进行初始化,然后对片上A/D、I/O、存储器设备等进行初始化,再对USB设备初始化,之后程序进入循环等待主机通过USB口发送命令,然后对命令进行相应处理。

图9 系统主程序流程图

  图9 系统主程序流程图

  A/D转换流程

  在使用TMS320F2812的内嵌A/D转换器进行数据采集时,首先对A/D进行初始化,并且设置中断程序入口地址,通过Timer中断的配置控制采样频率。在开启中断后,程序进入中断服务子程序,它将A/D转换结果读入数组Ad_data1[ ]中,并重新启动A/D,进行数据转换,如此循环往复。流程图如图10所示。

图10 系统程序流程图

  图10 系统程序流程图

  结束语

  本文利用TMS320F2812与PDIUSBD12相结合,设计了一套三维感应测井探测器的数据采集系统。其接口电路简单,采集高,可完成对24路通道的同时采样和顺序采样,并且能对单通道实行多次采样。系统还采用了USB接口,采集到的数据经过处理后,通过USB上传到主机,由上层软件进一步处理,从而能够更有效地测得油井中的油气分布。

参考文献:

[1]. TMS320F2812 datasheet https://www.dzsc.com/datasheet/TMS320F2812_1116432.html.
[2]. PDIUSBD12 datasheet https://www.dzsc.com/datasheet/PDIUSBD12_544412.html.
[3]. INA128 datasheet https://www.dzsc.com/datasheet/INA128_509882.html.
[4]. MAX267  datasheet https://www.dzsc.com/datasheet/MAX267+_858427.html.
[5]. PGA204 datasheet https://www.dzsc.com/datasheet/PGA204_546791.html.
[6]. PGA205 datasheet https://www.dzsc.com/datasheet/PGA205_546749.html.
[7]. MC33171 datasheet https://www.dzsc.com/datasheet/MC33171_1059542.html.
[8]. 25MHz datasheet https://www.dzsc.com/datasheet/25MHz_1136611.html.

关键词:DSPUSB

版权与免责声明

凡本网注明“出处:维库电子市场网”的所有作品,版权均属于维库电子市场网,转载请必须注明维库电子市场网,https://www.dzsc.com,违反者本网将追究相关法律责任。

本网转载并注明自其它出处的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品出处,并自负版权等法律责任。

如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。

广告
上传BOM文件: BOM文件
*公司名:
*联系人:
*手机号码:
QQ:
应用领域:

有效期:
OEM清单文件: OEM清单文件
*公司名:
*联系人:
*手机号码:
QQ:
有效期:

扫码下载APP,
一键连接广大的电子世界。

在线人工客服

买家服务:
卖家服务:

0571-85317607

客服在线时间周一至周五
9:00-17:30

关注官方微信号,
第一时间获取资讯。

建议反馈

联系人:

联系方式:

按住滑块,拖拽到最右边
>>
感谢您向阿库提出的宝贵意见,您的参与是维库提升服务的动力!意见一经采纳,将有感恩红包奉上哦!