电路设计中拉普拉斯变换的应用

出处:电子技术设计 发布于:2015-03-23 15:06:28

    拉普拉斯变换是工程数学中常用的一种积分变换,又名拉氏变换。拉氏变换是一个线性变换,可将一个有引数实数t(t≥ 0)的函数转换为一个引数为复数s的函数。拉氏变换英文名为Laplace Transform,为法国数学家拉普拉斯(Laplace,Pierre-Simon,marquisde)创立。主要运用于现代控制领域,和傅氏变换并称为控制理论中的两大变换。

    拉氏变换里的S是复变函数里为基础的一个符号,数学题做了这么多,考分也不低,但如果在多年的电路设计中用不上的话,岂不是对不起宝贵的青春了。

    要用好拉氏变换,先了解S的物理含义和其用途。信号分析有时域分析、频域分析两种,时域是指时间变化时,信号的幅值和相位随时间变化的关系;频域则是指频率变化时,信号的幅值和相位随时间变化的关系;而S则是连接时域与频域分析的一座桥梁。

    在电路中,用到的阻性用R表示;用到的感性特性和容性特性,分别用SL和1/SC表示,然后将其看成一个纯粹的电阻,只不过其阻值为SL(电感)和1/SC(电容);

    其他特性(如开关特性)则均可通过画出等效电路的方式,将一个复杂的特性分解成一系列阻性、感性、容性相结合的方式。并将其中的感性和容性分别用SL和1/SC表示。

    然后,就可以用初中学过的电阻串、并联阻抗计算的方式来进行分压、分流的计算,这当然很简单了。计算完后,一定会成一个如下四种之一的函数:

    Vo=Vi(s)--------------------(1)

    Io=Vi(s)--------------------(2)

    Vo=Ii(s)--------------------(3)

    Io=Ii(s) --------------------(4)

    下一步,如果是做时域分析,则将S=d/dt代入上述1-4其中之一的式子中,随后做微分方程的求解,则可求出其增益对时间的变化式 G(t);

    而如果做的是频域分析,则将S=jw代入上述1-4其中之一的式子中,随后做复变函数方程的求解,则可求出其增益对时间的变化式 G(w)、和相位对频率的变化式 θ(w);

    至于求出来时域和频域的特性之后,您再想把数据用于什么用途,那就不是我能关心得了的了。

    下面举一简单例子说明。

关键词:电路设计中拉普拉斯变换的应用电路设计拉普拉斯

版权与免责声明

凡本网注明“出处:维库电子市场网”的所有作品,版权均属于维库电子市场网,转载请必须注明维库电子市场网,https://www.dzsc.com,违反者本网将追究相关法律责任。

本网转载并注明自其它出处的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品出处,并自负版权等法律责任。

如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。

电路仿真,电源,三极管,Mos管,二极管,电子元器件,电子技术,硬件开发,电路设计
广告
OEM清单文件: OEM清单文件
*公司名:
*联系人:
*手机号码:
QQ:
有效期:

扫码下载APP,
一键连接广大的电子世界。

在线人工客服

买家服务:
卖家服务:
技术客服:

0571-85317607

网站技术支持

13606545031

客服在线时间周一至周五
9:00-17:30

关注官方微信号,
第一时间获取资讯。

建议反馈

联系人:

联系方式:

按住滑块,拖拽到最右边
>>
感谢您向阿库提出的宝贵意见,您的参与是维库提升服务的动力!意见一经采纳,将有感恩红包奉上哦!