电荷泵升压电路及其工作方法解析

出处:维库电子市场网 发布于:2018-01-06 16:29:55

电荷泵的工作过程为:首先贮存能量,然后以受控方式释放能量,获得所需的输出电压。开关式调整器升压泵采用电感器来贮存能量,而电容式电荷泵采用电容器来贮存能量。电容式电荷泵通过开关阵列和振荡器、逻辑电路、比较控制器实现电压提升,采用电容器来贮存能量。因工作在较高频率,可使用小型陶瓷电容器(1μF),其占用空间,使用成本较低。电荷泵转换器不使用电感器,因此其辐射EMI可以忽略。输入端噪声可用一只小型电容器滤除。电荷泵十分适用于便携式应用产品的设计,如蜂窝式电话、寻呼机、蓝牙系统和便携式电子设备。

1、电荷泵电路工作原理分析与设计

电荷泵也称为开关电容式电压变换器,是一种利用所谓的“快速”(Flying)或“泵送”电容(而非电感或变压器)来储能的DC-DC(变换器)。它们能使输入电压升高或降低,也可以用于产生负电压。其内部的FET开关阵列以一定方式控制快速电容器的充电和放电,从而使输入电压以一定因数(0.5,2或3)倍增或降低,从而得到所需要的输出电压。这种特别的调制过程可以保证高达80%的效率,而且只需外接陶瓷电容。由于电路是开关工作的,电荷泵结构也会产生一定的输出纹波和EMI(电磁干扰)。

电荷泵通过控制泵电容及调节开关来保持稳定的输出电压,电荷泵开关网络在泵电容充电和放电变换周期内可以实现泵电容的并行或串行排列。在给定的输入、输出条件(差分电压)下,应选择电荷泵的工作模式以保持要求的输出电压。电荷泵开关网络采用的MOSFET器件具有尺寸小,成本低,开关速度快,损耗等特点。

2、电荷泵电路研究与设计

2.1、比较升压电路

由于本设计采用Vcom是恒定电压、M2管栅极接脉冲信号驱动电路工作,因此要求激励信号要以中心电位为基准,交替的输出低电平和高电平信号来实现探头的周期性过饱和工作状态,本设计以0V作为地电位,5V作为高电位,因此选用比较器电路进行升压。

其电路如图1所示,脉冲信号接入比较器一端,另一端接入2.5V直流电平进行比较。当输入0V低电平时,比较器输出高电压5V,反之,则输出0V地电压。比较器高电平接5V直流电压,低电平接地。升压电路在实现逻辑功能的基础之上还要求输出具有较大的压摆率,以增加高低电平的转换速度。晶体管M10~M13构成两级反相器来增大电路的压摆率。

电荷泵升压电路及其工作方法解析


此电路图由三部分组成:运算放大电路、二级运算放大电路和偏置电路。

此电路图由7个pmos和6个nmos管组成,其中M1~M5构成运算,M7~M8构成二级运算,放大电路,M10~M13俩组反相器。M5、M9有共同的源极和栅极,导致他们电流大小的和与M7的宽长比值成比例。M10~M13作用:由于二级运算放大器输出的是模拟信号,在Vmin和Vmax之间变化,M10、M11组成的反相器使输出中间值变得更加准确。M12、M13组成的反相器使转化的更加明显和到位。同时晶体管M10~M13构成两级反相器来增大电路的压摆率。

设计参数计算是此电路图设计的一个关键步骤。此电路图电流源IS=400μA,Vdd=5V,Vcom=1.4V,M2输入是阶跃信号,Vmax=2.5V,Vmin=1V。其中M7与电流源串联,所以通过M7的电流也是IS,M5的栅极与M7的栅极相连接,且M7和M5的源极都是接地的,所以通过M5的电流也是IS。放大电路中M1,M3与M2,M4是并联,所以通过M1和M3的电流与通过M2和M4的电流大小相等都是IS/2;M10与M11一组,M12与M13一组,只要符合反相器电路设计就可以实现电路功能。

2.2、带隙基准电压源设计思路

电荷泵升压电路及其工作方法解析


为了提高高频时基准源的抑制比,该电路在基准源输出端增加RC滤波器,考虑到电容会延长电路的启动时间,电路中还加入了给电容充放电的快速启动电路和快速启动电路控制电路,一旦启动完成,快速启动电路控制电路关闭快速启动电路。电路的等效结构如图2所示。在该电路中,快速启动电路的控制电路是一个检测基准源输出端电压是否达到稳定值的判断电路,同时还起到温度补偿的作用,在没有增加电路复杂性情况下使基准源的输出具有很好的温度特性。带隙基准源的实际电路图如图3所示。

电荷泵升压电路及其工作方法解析


2.2.2、电路

带隙基准源实际电路图的电路是使用两管式带隙基准电压源,它是设计带隙基准电压源电路的,是进行下一步设计的必备步骤,设计如图4所示。

在图4中,QN6、QN7两管的发射极面积不等,QN7比QN6大,其比值为8∶1,它们的基极连在一起。QN6、QN7分别有QP7、QP6组成的镜像电流源作集电极有源负载,两管集电极电流相等。

电荷泵升压电路及其工作方法解析


因QN6、QN7的发射极面积不同,所以两管的实际电流密度JN6和JN7也就不相等。它们的VBE电压之差ΔVBE加在电阻R2,ΔVBE由下式求出:

电荷泵升压电路及其工作方法解析

由图可知,流过QN6和QN7两管的电流相等,同时电阻R1的电流量是它们之和,所以流过R2的电流是R1的1/2,流过R2的电流IN7为:

电荷泵升压电路及其工作方法解析

2.2.3、增强电源抑制比电路

带隙基准电压源,在传统设计中一般采用运算放大器来稳定电路,同时提高电源抑制比,但运算放大器高失调的缺陷限制了电源抑制比的进一步提高。并且当电源电压有频率较高的交流信号干扰时,放大器的输出会与电源电压有很明显的相位差,导致VREF高频时电源抑制比很低。如图5所示,为了避免放大器的缺陷,本文采用内部负反馈电路来提高VREF在低频时的电源抑制比。另外在电路输出端增加了一个RC滤波器,用来提高VREF在高频时的电源抑制比。

电荷泵升压电路及其工作方法解析


2.2.4、快速启动电路

快速启动电路如图6所示,当基准源输出没有到预定值而被控制电路检测到后,会输出高电平,N42栅电压为高电平,N42导通,同时使P8栅电压降低,P8导通,对电容C2充电;当快速启动电路检测到C2电容电压到预定值,低电平输出,从而关断快速启动电路,切断充电电流。

电荷泵升压电路及其工作方法解析


3、总结

本文设计了一种低功耗电荷泵DC/DC转换电路,并对其主要的比较器升压电路和带隙基准电压源进行了仔细的设计和仿真。其电路如图1所示,脉冲信号接入比较器一端,另一端接入2.5V直流电平进行比较。当输入0V低电平时,比较器输出高电压5V,反之,则输出0V地电压。比较器高电平接5V直流电压,低电平接地。升压电路在实现逻辑功能的基础之上还要求输出具有较大的压摆率,以增加高低电平的转换速度。晶体管M10~M13构成两级反相器来增大电路的压摆率。

关键词:电路

版权与免责声明

凡本网注明“出处:维库电子市场网”的所有作品,版权均属于维库电子市场网,转载请必须注明维库电子市场网,https://www.dzsc.com,违反者本网将追究相关法律责任。

本网转载并注明自其它出处的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品出处,并自负版权等法律责任。

如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。

广告
上传BOM文件: BOM文件
*公司名:
*联系人:
*手机号码:
QQ:
应用领域:

有效期:
OEM清单文件: OEM清单文件
*公司名:
*联系人:
*手机号码:
QQ:
有效期:

扫码下载APP,
一键连接广大的电子世界。

在线人工客服

买家服务:
卖家服务:

0571-85317607

客服在线时间周一至周五
9:00-17:30

关注官方微信号,
第一时间获取资讯。

建议反馈

联系人:

联系方式:

按住滑块,拖拽到最右边
>>
感谢您向阿库提出的宝贵意见,您的参与是维库提升服务的动力!意见一经采纳,将有感恩红包奉上哦!