具有功率因数校正、控制和保护功能的荧光灯镇流器集成电路
出处:维库电子市场网 发布于:2023-07-24 15:24:20
无闪烁照明;
无可闻噪音;
轻易增加功率因数校正。
磁性镇流器使用的铁芯电磁元件工作在60Hz,会产生可闻噪音,而设计的高频电子镇流器不会发出可闻的交流噪声。
功率因数校正与总谐波失真(THD,即由镇流器产生的功率谐波)也有关系。由镇流器产生的任何谐波会对其它连接在同一个电源的电子系统造成坏的影响。功率因数为1.0,意味着输入功率是纯正弦波且无谐波失真(THD=0%),因此是有高功率因数(PF)和低THD。
单片IC能否提供完整的镇流器控制以减小了硬件的成本、简化了镇流器到灯的接口?
储存适用于所有系统配置的单片IC能减小硬件库存。IC是否适用于宽范围的灯类型和尺寸?
控制IC是否可以编程,以便根据应用的要求设置系统特性,从而使系统设计更灵活?
IC是否内置了可以减小整体元件数量的PFC电路?
是否有可以简化照明系统的设计的演示板?
演示板是否备有计算机辅助设计软件以减小产品投放市场的时间?
IR2166和IR2167给上面的问题的回答都是肯定的。老一代电子镇流器控制器采用一颗分离的控制IC、栅极驱动IC和PFC IC,而IR2166和IR2167采用单芯片方案,减低系统成本。除了减少元件数量外,这些IC也简化安装,提高可靠性和节省设计时间。另外,它们也减小新荧光灯照明系统投放市场的时间。
这种集成电路能在电压或电流尖峰时提供保护,从而进一步延长电灯及镇流器的寿命,同时提供无闪烁的高质量照明。这些保护项目包括:欠压锁定、软启动、触发故障、灯丝失效、过电流、寿命完结保护、更换电灯后自动重启,以及直流总线欠压复位。
PFC是IR2166和IR2167的主要集成功能。没有PFC,控制器将产生谐波电流,引起电源分布系统的损耗和发热,甚至损坏发电设备。虽然单个控制器的功率一般较低,但多个控制器产生的综合谐波电流能产生较大影响。如果产生了足够的负载,便可能触发断路器,干扰其它产品或引起火灾。
IR2166和IR2167两者也有类似的PFC电路在芯片上。传统的PFC电路以非常低的增益工作,以实现高功率因数和低THD,但问题是在灯触发时,直流总线电压会大幅下降,阻碍灯触发或使灯熄灭。IR2166和IR2167可在预热和触发期间动态地改变至高增益模式,防止直流总线电压下降,然后在正常运行时变回低增益模式以得到高功率因数和低THD。为镇流器模式的功能加入PFC增益体现了集成的好处,它的性能比现有PFC方法更。没有PFC阶段,THD会高于100%,功率因数会低至0.50。
IR2167镇流器控制系统原理。交流电一般接口到为IC提供直流电的桥式整流器。IC驱动两个外部低成本功率MOSFET以控制荧光灯管和另外一个用于PFC电路的外部MOSFET。PFC电路是一个工作于临界导通和自由运行模式的有源升压变换器。在整个通用输入电压范围内,PFC电路实现大于99%的功率因数和低于10%的总谐波失真(THD)。
IR2167是一个完整保护的600V镇流器控制IC,容易适配于不同类型的电灯。IC灵活性高,设计者可以独立设置预热和触发频率。镇流器控制部分的是一个具有外部可编程死区时间的变频振荡器。其控制部分也提供电灯故障检测、关断和更换电灯后自动重启所需的电路。Vcc内部的15.6V齐纳二极管可防止直流的过电压影响输入。IR2167 IC备有20脚PDIP和宽体SOIC封装。
可编程特性提供了高度的设计灵活性,包括预热时间和频率、触发斜率、过电流和运行频率。其它工作特性包括内部故障计数器、动态重启、欠压锁定和150mA启动电流。
基本上这两个IC的PFC控制是一样的,但镇流器控制却不同。IR2167具有额外的特性,如欠电流保护、低于谐波点保护和热过载保护。IR2167也简化了电灯并联、多灯和多类型电灯的设计。IR2167具有更多的功能,其封装为20脚,而IR2166是16脚。
IR2167的CS接脚负责检测故障情况,如触发失败、正常工作时过电流、硬开关、无负载和低于谐振点工作。如检测到以上任何一种状态,故障锁存器便会置位,振荡器关上,栅极驱动器输出变低,芯片进入微功率模式。对于过电流、触发失败和硬开关故障,芯片在预热尾声时可启动外部可编程正向CS+临限,而正向临限的水平由外部电阻值决定。
IR2166和IR2167同样具有演示板,可简化照明系统的样机设计。演示板专为驱动快速启动荧光灯而设计,具有高效率、高功率因素和固定输出电子镇流器。这些演示板包括EMI滤波器、有源功率因数校正和一个镇流器控制电路。
版权与免责声明
凡本网注明“出处:维库电子市场网”的所有作品,版权均属于维库电子市场网,转载请必须注明维库电子市场网,https://www.dzsc.com,违反者本网将追究相关法律责任。
本网转载并注明自其它出处的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品出处,并自负版权等法律责任。
如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
- LED背光 vs. CCFL背光:原理、特点及对比2025/8/5 16:49:19
- OLED屏的烧屏问题及解决方法2025/8/4 16:54:27
- LCD 高清平板时代:偏压供电电路设计面临的挑战2025/8/2 10:34:20
- LCD 高清平板偏压供电电路设计难题解析2025/8/1 10:41:32
- lcd1602液晶显示模块工作原理2025/7/21 17:28:58