基于FPGA的PLL频率合成器设计
出处:电子技术应用 发布于:2009-09-01 15:39:49
摘 要:应用FPGA,采用PLL频率合成技术,结合教学实验平台的需要,设计出了一个整数/半整数频率合成器,输出范围为1 kHz~999.5 kHz,步进频率可达到0.5 kHz。与以前的教学实验装置相比,系统在性能指标、直观性等方面都有所提高,不仅可以用于教学实验,还可以用作频率源、频率计。
频率合成技术是现代通信的重要组成部分,它是将一个高稳定度和高准确度的基准频率经过四则运算,产生同样稳定度和准确度的任意频率。频率合成器是电子系统的心脏,是影响电子系统性能的关键因素之一。本文结合FPGA技术、锁相环技术、频率合成技术,设计出了一个整数/半整数频率合成器,能够方便地应用于锁相环教学中,有一定的实用价值。
1 PLL频率合成器的基本原理
频率合成器主要有直接式、锁相式、直接数字式和混合式4种。目前,锁相式和数字式容易实现系列化、小型化、模块化和工程化,性能也越来越好,已逐步成为为典型和广泛的应用频率合成器[1]。本文主要采用集成锁相环PLLphase-Lockde Loop芯片CD4046,运用FPGA来实现PLL频率合成器。
锁相频率合成器是由PLL构成的。一个典型的锁相频率合成器的原理框图如图1所示。
它的工作过程可以简单描述为:鉴相器输出电流的平均直流值乘以环路滤波器的阻抗,形成VCO的输入控制电压。VCO是一种电压—频率变换装置,具有一个比例常数。环路滤波器的控制电压调整了VCO的输出相位,除以N后,等于比较频率的相位。因为相位是频率的积分,所以这个过程同样适用于频率,输出频率可表示为:
公式1只有在PLL处于锁定状态下才成立,而在PLL重新调整到锁定状态的中间过程不成立。在实际应用中,R值是固定的,N值是可变的[2],XTAL为输入信号的频率。
2 系统设计
整个系统的功能主要由FPGA芯片EPF10K10 LC84-4控制相关硬件实现。本系统的原理框图如图2所示。
从图2可以看出,一方面,40 MHz有源晶振通过FPGA的控制进行分频,得到1 kHz的频率信号,作为CD4046的输入基准分频,CD4046的VCO的输出信号直接输入整数分频模块和半整数分频模块;另一方面,键盘扫描输出键值,键值送往功能模块。功能模块指示“确定”,那么键值作为分频系数,送到整数分频和半整数分频模块,分别对VCO输入的信号进行分频;功能模块指示“清除”,那么分频系数清零。键值的一位直接控制二路选择模块:键值的一位是“0”,控制二路选择模块输出整数模块结果;键值的一位是“5”,控制二路选择模块输出半整数模块结果。分频输出的结果与锁相环的基准频率在鉴相器中进行比较,产生一个对应于这两个信号相位差的Ud电压信号,再经过环路滤波器滤除Ud中的高频分量与噪声,输出Uc,Uc再输入VCO,使得压控振荡器的振荡频率不断向输入信号的频率靠拢,使得环路达到锁定,VCO输出稳定频率。
工作过程中,FPGA控制可预置的N/N+0.5的变化,当N/N+0.5变化时,输出信号频率响应跟着输入信号变化。同时FPGA也实现了键盘扫描与液晶显示的功能。
2.1 系统硬件设计
硬件上,如图3所示。该系统部分主要由7大部分组成:外部系统时钟、4×4键盘控制电路、FPGA处理芯片、EPC2LC20型EPROM芯片、PLL芯片CD4046及其外围电路、液晶1602显示模块、示波器。本设计使用FPGA专用配置芯片EPC2,通过电缆ByteBlaster MV,把程序多次到FPGA芯片中。系统使用FPGA芯片作为控制中心,按键扫描输入控制信息,液晶屏进行显示,能够方便直观地演示PLL芯片CD4046在频率合成技术中的应用,且达到了预期的指标要求。本设计中的主要硬件的具体型号是:液晶TC1602A-01T,FPGA芯片EPF10K10LC84-4,40.000 MHz有源晶振HO-12B。
2.2 系统软件设计
通过编写VHDL程序实现整数/半整数分频,并应用Quartus II和ModelSim,笔者完成了VHDL程序的设计及仿真。
系统软件功能框图如图4所示。
系统的具体工作过程如下:
键盘扫描模块负责扫描按键,输出键值,键值输入到1602液晶模块中进行显示。同时,通过功能键模块去控制键值输入到FPGA中的分频模块中,功能模块为“确定”时,键值输入到FPGA分频模块中,分频系数N就等于输入的键值。功能模块为“清除”时,FPGA分频模块中,分频系数N就会被清零。
3 系统测试及结果
测试仪器:INSTEK GOS-620(20 MHz模拟示波器)
测试温度:室温
3.1 检测系统是否入锁
键盘输入从1~999.5时,所测CD4046的1号管脚波形如图5所示,指示PLL处于入锁状态。
3.2 检测较低频的整数/半整数分频
当N=3、9、13、1.5、5.5、9.5,输入为1 kHz的频率时,CD4046的输出波形分别如图6(a)、(b)、(c)、(e)、(f)、(g)所示。从图中可以很明显地读到,输出分别为3 kHz、9 kHz、13 kHz、1.5 kHz、5.5 kHz和9.5 kHz。这与理论上预见的结果是一致的。
3.3 检测较高频的整数/半整数分频
当N为更高的数值时,通过比较CD4046的输入输出波形,很难直接看出来。这时输入仍采用1kHz的频率值,这时直接看输出的频率值。N=100、500、999、999.5时的波形分别如图7(a)、(b)、(c)、(d)所示。
由图7(a)得:所测频率为1/(10×10-6)Hz=100 kHz
由图7(b)得:所测频率为2/(10×10-6)Hz=500 kHz
由图7(c)得:所测频率约为1/(10×10-6)Hz=1 MHz
由图7(d)得:所测频率约为1/(10×10-6)Hz=1 MHz
可见,这时实测值与理论上预见的结果也是一致的。
3.4 误差分析
较低频时的波形之所以占空比不是标准的50%,是由于CD4046输出频率经过FPGA分频模块之后产生的反馈信号只是一个脉冲信号,这个脉冲信号要与出入CD4046的1kHz的标准信号进行相位比较,而标准信号的占空比是50%,这就造成了相位比较之后产生的信号波形占空比不是50%,而本系统测试时所采用的是模拟示波器,对较低频占空比非50%的显示不是很好,这很有可能是由于波形不是非常标准的主要原因。
在测试完成之后,又用数字示波器来专门检测CD4046的输出频率,结果与理论计算几乎吻合。
本系统结合FPGA技术、锁相环技术、频率合成技术,设计出了一个整数/半整数频率合成器,输出范围为1 kHz~999.5 kHz,步进频率可达到0.5 kHz;与以前的实验装置相比,系统在性能指标、直观性等方面都有所提高,它不仅可以用于教学实验,还可以用作频率源、频率计。
参考文献:
[1]. CD4046 datasheet https://www.dzsc.com/datasheet/CD4046_1865288.html.
[2]. XTAL datasheet https://www.dzsc.com/datasheet/XTAL_1134460.html.
[3]. EPC2LC20 datasheet https://www.dzsc.com/datasheet/EPC2LC20_1097517.html.
[4]. EPROM datasheet https://www.dzsc.com/datasheet/EPROM_1128137.html.
[5]. EPC2 datasheet https://www.dzsc.com/datasheet/EPC2_2058984.html.
[6]. EPF10K10LC84-4 datasheet https://www.dzsc.com/datasheet/EPF10K10LC84-4_1097486.html.
版权与免责声明
凡本网注明“出处:维库电子市场网”的所有作品,版权均属于维库电子市场网,转载请必须注明维库电子市场网,https://www.dzsc.com,违反者本网将追究相关法律责任。
本网转载并注明自其它出处的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品出处,并自负版权等法律责任。
如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
- PLC 编程中急停开关触点抉择:常开还是常闭?接线要点揭秘2025/6/26 16:02:37
- 全面解析:PLC 控制柜设计原理、布局接线与原理图2025/6/16 16:12:05
- PLC控制系统输入/输出回路的隔离技术2025/6/12 17:27:11
- 深度解析:PLC 上升沿和下降沿指令的应用时机与使用方法2025/6/9 15:18:19
- 利用 PLC 轻松打造红绿交通灯控制系统2025/5/29 15:36:55