多模式调制器的设计与应用

出处:雷求胜 唐 宁 陈 科 发布于:2011-08-24 15:49:32

  软件无线电是近年来提出的一种新的无线通信体系结构。软件无线电的基本思想是以一个通用、标准、模块化的硬件平台为依托,通过软件编程来实现无线电台的各种功能,从基于硬件、面向用途的电台设计方法中解放出来。功能的软件化实现势力要求减少功能单一、灵活性差的硬件电路,尤其是减少模拟环节,把数字化处理(A/D和D/A变换)尽量靠近天线。软件无线电强调体系结构的开放性和全面可编程性,通过软件更新改变硬件配置结构,实现新的功能。软件无线电采用标准的、高性能的开放式总线结构,以利于硬件模块的不断升级和扩展。

  软件无线电(softwareradio)在一个开放的公共硬件平台上利用不同可编程的软件方法实现所需要的无线电系统。简称SWR.理想的软件无线电应当是一种全部可软件编程的无线电,并以无线电平台具有的灵活性为特征。全部可编程包括可编程射频(RF)波段、信道接入方式和信道调制。

  如何产生多种调制信号,一直是大家讨论和关注的热点。本文提出的方案就是基于超高速、先进DDS技术的数字中频处理技术的方法,利用美AD公司推出的AD9954构建一个硬件平台,结合相应的数字处理软件和控制软件,获得多种调制信号。一方面由于体积变小,使用起来很方便,另一方面也大大降低了成本。

  1 DDS的原理介绍

  DDS同 DSP(数字信号处理)一样,是一项关键的数字化技术。DDS是直接数字式频率合成器(Direct Digital Synthesizer)的英文缩写。与传统的频率合成器相比,DDS具有低成本、低功耗、高分辨率和快速转换时间等优点,广泛使用在电信与电子仪器领域,是实现设备全数字化的一个关键技术。

  直接数字频率合成器DDS是近年来发展起来的一种新的基于查找表的频率合成技术。典型的DDS由相位累加器、ROM波形存储表、D/A转换器(Digital-to-AnalogConverter,DAC)和低通滤波器(LoW Passed Filter,LPF)组成,如图1所示。

  相位累加器由N位加法器与N位累加寄存器级联构成。每来一个时钟脉冲fs,加法器将频率控制字FTW与累加寄存器输出的累加相位数据相加,使加法器在下一个时钟脉冲的作用下继续与频率控制字相加。由此可以看出,相位累加器在每一个时钟脉冲输入时,把频率控制字累加1次,相位累加器输出的数据就是合成信号的相位,相位累加器的溢出频率就是DDS输出的信号频率。

  用相位累加器输出的数据作为波形存储(ROM)的相位取样地址,完成相位到幅值转换。波形存储器的输出送到D/A转换器,D/A转换器将数字量形式的波形幅值转换成所要求合成频率的模拟量形式信号。低通滤波器用于滤除不需要的取样分量,以便输出频谱纯净的正弦波信号。

  若相位累加器的位数为N.改变频率控制字FTW或参考时钟fs,就可以改变输出频率fo:

  DDS在相对带宽、频率转换时间、高分辨率、相位连续性、正交输出以及集成化等一系列性能指标方面远远超过了传统频率合成技术所能达到的水平,为系统提供了优于模拟信号源的性能。

  2 AD9954芯片的介绍

  2.1 AD9954的主要性能特性

  1)DDS采样率可达400 MSPS;2)内置14位DAC;3)32位相位累加器;4)波特率达25 M的SPI接口;5)内置1 024x32位RAM,可实现内部调制;6)内部采用1.8 V供电,超低功耗;7)可自动线性和非线性扫频。

  2.2 AD9954的原理及工作过程

  AD9954是采用先进的DDS技术开发的高集成度DDS器件。该芯片的速度是业界个时钟达到400 MHz,合成技术高达160 MHz,功耗200 mW.以前产品的合成频率只有120 MHz且功耗却有2 W.

  AD9954作为新型DDS系列的旗舰产品,内置高速、高性能14位DAC,它内含1 024x32静态RAM,可实现高速调制。可提供自定义的线性扫频操作模式,采用自动线性和非线性扫描功能来控制频率调谐和相位,其中频率调谐和控制字通过串行I/O口加载到AD9954,可实现多片同步。

  3 系统设计原理框图

  多种调制信号平台由TI的430单片机、Altera公司的FPGA、AD公司的AD9954、外围的滤波和整形电路搭建而成。其中以AD9954为元器件来产生原始的所需波形,如图2所示。

  通过MCU控制FPGA的调制类型状态和DDS调制芯片的寄存器数值,完成利用人机界面对整体电路的控制和配置过程。FPGA将A/D转换过后的基带信号通过确定的调制方式再经相应的转换送入DDS调制IC中。DDS的输出信号经功率放大后再进行输出。

  AD9954的串口与FPGA相连,FPGA通过AD9954的CS、SCLK、SDIO和SDO管脚向AD9954写入数据和控制字。首先设置特定的寄存器控制字,允许RAM工作,然后写好RAM段控制寄存器的值,定义起始地址、终止地址并选择工作模式。例如,在RAM地址256~511中写入计算好的频率值,主要操作过程如下:

  1)允许RAM操作,清除CFR<30>;2)选择模式5即连续循环模式;3)选择RAM段1,PS0=1,PS1=0;4)指令字节为00001001;5)定义通信阶段的通信周期数为256,把数据写入RAM存储器地址256~511中:6)改变I/O UPDATE启动模式工作。由于SYNC_CLK为100 MHz,从而决定了地址变化率控制字为1时能定义的快速度为100 MHz,假设一个波形要采集256个点,那么调制速度为100 MHz/256=400 kHz;如果采样点为100个,则调制速度可达100 MHz/100=1 MHz.由于AD9954产生的调制波形采样点多,采样时间,因此波形性能较好。

  4 输出信号介绍及设置AD9954中的寄存器

  4.1 正弦信号

  正弦波信号广泛地应用于通信系统中,它可以作为载波信号来进行数字系统的调制,这不仅仅是因为它容易产生,主要的是它便于接收并且形式简单。其数学表达式为:

  平台上的实现:AD9954首先通过关闭RAM模式和线性扫频模式来实现单频模式,然后设置频率字设置寄存器1来实现要获得的频率。它的频率计算公式如下:

  4.2 线性调频信号

  线性调频信号是一种发射脉冲信号在信息脉冲持续时间T内作线性变化,其瞬时频率随时间线性变化。这种信号的产生可以由一个锯齿波控制压控振荡器实现,振荡频率随锯齿波而变化,因此脉冲信号的载频从原来单一频率展宽为一个频带。可以用以下表达式来说明这个过程:

  式中ω0为载波频率的初始值,u为一个常数,因此线性调频信号的瞬时相位声φ(t)和线性调频信号在信息脉冲持续时间T内的表达式s(t)分别为:

  平台上的实现:在AD9954中通过设置控制寄存器CFR1的21位为1来实现这一功能,分别向两个频率字设置寄存器FTW1和FTW2写入扫频的起始频率和结束频率,同时值得指出的是,可以选择从低频率到高频率的扫频,也可以选择从高频率到低频率的扫频。

  4.3 FSK调制信号

  FSK(Frequency-shift keying)- 频移键控是利用载波的频率变化来传递数字信息。它是利用基带数字信号离散取值特点去键控载波频率以传递信息的一种数字调制技术。它还有另一个含义刷街,

  FSK信号也可以分为2FSK信号和多进制数字频率调制。2FSK信号是由信息源符号1和0对应于不同的两个载频来实现调制的一种方式。其数学表达式为:

  


     其中,g(t)为单个矩形脉冲,脉宽为Ts,


  由于AD9954具有4个不同的RAM区,因此也可以实现四进制的频率调制,其实现方式与相位调制类似。

  4.4 BPSK,QPSK调制信号

  BPSK,QPSK信号是载波相位按照基带脉冲而改变的一种数字调制方式。BPSK和QPSK信号的表达式分别为:

  g(t)是脉冲为L的单个矩形脉冲,其中:ak=cosψk,bk=sinψk(ψk为受调相位)

  在这里实现的只是移相方式,对于BPSK而言,是按照1对应相位π,0对应相位0的方式来实现的;对于QPSK信号,则是由2 bit脉冲信号的4种不同状态来选择4种不同的相位,4种相位有2组形式,可选择0,π/2,3π/2,7π/2和π/4,3π/4,5π/4,7π/4中的任意一组作为参考相位。

  要实现上述调制信号,必须使AD9954工作在RAM模式下,通过设置控制寄存器CFR1的21位为0,同时配合外部片选信号PS0,PS1来实现4个RAM区的转换。每个RAM区的首地址中存储的是相位信息。选择不同的RAM区,就会选择不同的初始参考相位,从而达到相位调制的目的。

  5 软件系统设计

  5.1 单片机编程

  采用中断的方式对AD9954写入控制字,在每写完一个控制字命令周期后,主机向AD9954发送一个更新信号,进入下一个控制命令字周期的写入。在每写完8 bit数据后就进行中断,每中断后设置标志位,等待下中断。主程序根据键盘选择调制方式,按确定后选择需要的调制信号,流程图如图3所示。

  5.2 FPGA的编程设计

  首先利用FPGA制作1个ROM表,该表中存入的是一组相位信息或者频率信息,然后通过时钟的分频及译码电路获得信息表的地址,将对应地址的内容作为输出,通过1个判决电路(二选一电路)来控制输出模式。ROM表中的地址内容可以控制AD9954对实际相位值或实际频率值的选择。

  FPGA采用了逻辑单元阵列LCA(Logic Cell Array)这样一个概念,内部包括可配置逻辑模块CLB(Configurable Logic Block)、输出输入模块IOB(Input Output Block)和内部连线(Interconnect)三个部分。 现场可编程门阵列(FPGA)是可编程器件。与传统逻辑电路和门阵列(如PAL,GAL及CPLD器件)相比,FPGA具有不同的结构,FPGA利用小型查找表(16×1RAM)来实现组合逻辑,每个查找表连接到一个D触发器的输入端,触发器再来驱动其他逻辑电路或驱动I/O,由此构成了即可实现组合逻辑功能又可实现时序逻辑功能的基本逻辑单元模块,这些模块间利用金属连线互相连接或连接到I/O模块。

  由于FPGA的内部时钟存在一定的不稳定性,因此在这里选用外部稳定的晶振作为输入,一方面提供了稳定的时钟输入,另一方面又可以减小FPGA内部宝贵资源的使用。

  6 实验输出波形的时域和频域分析图

  6.1 AM信号测试分析

  AM系统频域频谱结构和时域解调波形测试结果分别如图5、图6所示。

  AM载波频率设置为52.5 MHz,实际测得的中心频率为52.500 663 MHz,频率误差为0.000 663/52.5=1.263x10-5,误差在系统规定的范围内。

  6.2 2FSK和4PSK信号测试分析

  在该平台下生成的FSK和QPSK频谱如图7、图8所示。

  2FSK信号是设置AD9954在Direct Switch模式下进行测试的,AD9954的系统时钟为200 MHz,RAM0和RAM1设置的频率值分别为9.7 MHz和9.9 MHz.将2FSK信号波形数据采集并存储后对其做FFT变换,画出其频谱图如图6所示,可见在9.69 MHz和9.88MHz有两根谱线,证明采集到的为2FSK信号。

  4PSK信号是设置AD9954在Direct Switch模式下进行测试的,AD9954的系统时钟为200 MHz,RAM0、RAM1、RAM2和RAM3设置的频率值分别为9.7 MHz、10.3 MHz、10MHz和10.9 MHz.根据基带信号的0或1或2或3改变PS1和PS0的值即可产生4FSK信号。

  7 结束语

  本文介绍了采用先进DDS技术的AD9954性能特点和工作原理及过程,利用其可编程幅度、频率、相位给出了AD9954在高速调制信号系统中的应用方案,从而较方便地实现基于软件无线电技术的各种调制信号。采用超高速、先进DDS技术的数字中频处理技术的方法,构建AD9954硬件实现平台,结合相应的数字处理软件和控制软件,可获得调幅、噪声调频、FSK、PSK等多种调制信号。本文提出的硬件实现方案,为产生多模式信号提供了硬件平台,具有较好的应用价值。


  
关键词:调制器

版权与免责声明

凡本网注明“出处:维库电子市场网”的所有作品,版权均属于维库电子市场网,转载请必须注明维库电子市场网,https://www.dzsc.com,违反者本网将追究相关法律责任。

本网转载并注明自其它出处的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品出处,并自负版权等法律责任。

如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。

上传BOM文件: BOM文件
*公司名:
*联系人:
*手机号码:
QQ:
应用领域:

有效期:
OEM清单文件: OEM清单文件
*公司名:
*联系人:
*手机号码:
QQ:
有效期:

扫码下载APP,
一键连接广大的电子世界。

在线人工客服

买家服务:
卖家服务:

0571-85317607

客服在线时间周一至周五
9:00-17:30

关注官方微信号,
第一时间获取资讯。

建议反馈

联系人:

联系方式:

按住滑块,拖拽到最右边
>>
感谢您向阿库提出的宝贵意见,您的参与是维库提升服务的动力!意见一经采纳,将有感恩红包奉上哦!